

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/gentlejackbitcoinorg/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/gentlejackbitcoinorg/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: Build Status]

How To Participate

Bitcoin.org needs volunteers like you! Here are some ways you can help:

	“Watch” this repository to be notified of issues and Pull Requests
(PRs) that could use your attention. Scroll to the top of this page
and click the Watch button to get notifications by email and on your
GitHub home page.

Alternatively, email volunteer coordinator Dave Harding
dave@dtrt.org with a short list of your interests and skills, and
he’ll email you when there’s an issue or PR that could use your
attention.

	Help write new documentation for the developer
documentation pages [https://bitcoin.org/en/developer-documentation] or upcoming full node page [https://github.com/bitcoin-dot-org/bitcoin.org/pull/711], or review PRs
adding new documentation [https://github.com/bitcoin-dot-org/bitcoin.org/pulls?q=is%3Aopen+label%3A%22Dev+Docs%22+is%3Apr]. You don’t need to be a Bitcoin expert
to review a PR—these docs are written for non-experts, so we need to
know if non-experts find them confusing or incomplete. If you review a
PR and don’t find any problems worth commenting about, leave a “Looks
Good To Me (LGTM)” comment.

	Submit new wallets for the Choose Your Wallet page [https://bitcoin.org/en/choose-your-wallet], or
help us review wallet submissions [https://github.com/bitcoin-dot-org/bitcoin.org/pulls?q=is%3Aopen+label%3Awallet+is%3Apr].

	Translate Bitcoin.org into another language using Transifex [https://www.transifex.com/projects/p/bitcoinorg/] or
help review new and updated translations. Translation coordinator
needed to answer translator questions and help process
reviews—email dave@dtrt.org for details.

	Add Bitcoin events to the events page [https://bitcoin.org/en/events] either by editing _events.yml [https://github.com/bitcoin-dot-org/bitcoin.org/edit/master/_events.yml]
according to the event instructions or by filling in a pre-made
events issue [https://github.com/bitcoin-dot-org/bitcoin.org/issues/new?title=New%20event&body=%20%20%20%20-%20date%3A%20YYYY-MM-DD%0A%20%20%20%20%20%20title%3A%20%22%22%0A%20%20%20%20%20%20venue%3A%20%22%22%0A%20%20%20%20%20%20address%3A%20%22%22%0A%20%20%20%20%20%20city%3A%20%22%22%0A%20%20%20%20%20%20country%3A%20%22%22%0A%20%20%20%20%20%20link%3A%20%22%22].

	Help improve Bitcoin.org using your unique skills. We can always use
the help of writers, editors, graphic artists, web designers, and anyone
else to enhance Bitcoin.org’s current content [https://bitcoin.org/] or to add new
content. See the list of recommended starter projects [https://github.com/bitcoin-dot-org/bitcoin.org/wiki/Starter-Projects] or email
volunteer coordinator Dave Harding dave@dtrt.org to start a
conversation about how you can help Bitcoin.org.

You can always report problems or help improve bitcoin.org by opening a new issue [https://github.com/bitcoin-dot-org/bitcoin.org/issues/new] or pull request on GitHub [https://github.com/bitcoin-dot-org/bitcoin.org].

Working With GitHub

GitHub allows you to make changes to a project using git, and later submit them in a “pull request” so they can be reviewed and discussed. Many online how-tos exist so you can learn git, here’s a good one [https://www.atlassian.com/git/tutorial/git-basics].

In order to use GitHub, you need to sign up [http://github.com/signup] and set up git [https://help.github.com/articles/set-up-git]. You will also need to click the Fork button on the bitcoin.org GitHub page [https://github.com/bitcoin-dot-org/bitcoin.org] and clone your GitHub repository into a local directory with the following command lines:

git clone (url provided by GitHub on your fork's page) bitcoin.org
cd bitcoin.org
git remote add upstream https://github.com/bitcoin-dot-org/bitcoin.org.git

How to send a pull request

	Checkout to your master branch. git checkout master

	Create a new branch from the master branch. git checkout -b (any name)

	Edit files and preview the result.

	Track changes in files. git add -A

	Commit your changes. git commit -m '(short description for your change)'

	Push your branch on your GitHub repository. git push origin (name of your branch)

	Click on your branch on GitHub and click the Compare / pull request button to send a pull request.

When submitting a pull request, please take required time to discuss your changes and adapt your work. It is generally a good practice to split unrelated changes into separate branches and pull requests.

Travis Continuous Integration (CI)

Shortly after your Pull Request (PR) is submitted, a Travis CI job will
be added to our queue [https://travis-ci.org/bitcoin-dot-org/bitcoin.org]. This
will build the site and run some basic checks. If the job fails, you
will be emailed a link to the build log and the PR will indicate a
failed job. Read the build report and try to correct the problem—but
if you feel confused or frustrated, please ask for help on the PR (we’re
always happy to help).

If you don’t want a particular commit to be tested, add [ci skip]
anywhere in its commit message.

If you’d like to setup Travis on your own repository so you can test
builds before opening a pull request, it’s really simple:

	Make sure the master branch of your repository is up to date with the
bitcoin-dot-org/bitcoin.org master branch.

	Open this guide [http://docs.travis-ci.com/user/getting-started/]
and perform steps one, two, and four. (The other steps are already
done in our master branch.)

	After you push a branch to your repository, go to your branches page
(e.g. for user harding, github.com/harding/bitcoin.org/branches). A
yellow circle, green checkmark, or red X will appear near the branch
name when the build finishes, and clicking on the icon will take you
to the corresponding build report.

How to make additional changes in a pull request

You simply need to push additional commits on the appropriate branch of your GitHub repository. That’s basically the same steps as above, except you don’t need to re-create the branch and the pull request.

How to reset and update your master branch with latest upstream changes

	Fetch upstream changes. git fetch upstream

	Checkout to your master branch. git checkout master

	Replace your master branch by the upstream master branch. git reset --hard upstream/master

	Replace your master branch on GitHub. git push origin master -f

Advanced GitHub Workflow

If you continue to contribute to Bitcoin.org beyond a single pull
request, you may want to use a more advanced GitHub
workflow [https://gist.github.com/harding/1a99b0bad37f9498709f].

Previewing

Preview Small Text Changes

Simple text changes can be previewed live on bitcoin.org. You only need to click anywhere on the page and hold your mouse button for one second. You’ll then be able to edit the page just like a document. Changes will be lost as soon as the page is refreshed.

Build The Site Locally

For anything more than simple text previews, you will need to build the
site. If you can’t do this yourself using the instructions below, please
open a pull request with your suggested change and one
of the site developers will create a preview for you.

To build the site, you need to go through a one-time installation
procedure that takes 15 to 30 minutes. After that you can build the
site an unlimited number of times with no extra work.

Install The Dependencies

Before building the site, you need to install the following
dependencies and tools, which are pretty easy on any modern Linux:

Install binary libraries and tools

On recent versions of Ubuntu and Debian, you can run the following
command to ensure you have the required libraries, headers, and tools:

sudo apt-get install build-essential git libicu-dev zlib1g-dev

Install RVM

Install RVM using either the easy instructions [https://rvm.io/] or the
more secure instructions [https://rvm.io/rvm/security].

Read the instructions printed to your console during setup to enable the
rvm command in your shell. After installation, you need to run the
following command:

source ~/.rvm/scripts/rvm

Install Ruby 2.0.0

To install Ruby 2.0.0, simply run this command:

rvm install ruby-2.0.0

Sometimes this will find a pre-compiled Ruby package for your Linux
distribution, but sometimes it will need to compile Ruby from scratch
(which takes about 15 minutes).

After Ruby 2.0.0 is installed, make it your default Ruby:

rvm alias create default ruby-2.0.0

And tell your system to use it:

rvm use default

(Note: you can use a different default Ruby, but if you ever change
your default Ruby, you must re-run the gem install bundle command
described below before you can build the site. If you ever receive a
“eval: bundle: not found” error, you failed to re-run gem install bundle.)

Install Bundle

When you used RVM to install Ruby, it also installed the gem program.
Use that program to install bundle:

gem install bundle

Install the Ruby dependencies

Ensure you checked out the site repository as described in Working with
GitHub. Then change directory to the top-level of
your local repository (replace bitcoin.org with the full path to your local
repository clone):

cd bitcoin.org

And install the necessary dependencies using Bundle:

bundle install

Note that some of the dependencies (particularly nokogiri) can take a
long time to install on some systems, so be patient.

Once Bundle completes successfully, you can preview or build the site.

Preview The Site

To preview the website in your local browser, make sure you’re in the
bitcoin.org directory and run the following command:

make preview

This will compile the site (takes 5 to 10 minutes; see the speed up
instructions) and then print the a message like this:

Server address: http://0.0.0.0:4000
Server running... press ctrl-c to stop.

Visit the indicated URL in your browser to view the site.

Build The Site

To build the site exactly like we do for the deployment server, make
sure you’re in the bitcoin.org directory and run:

make

The resulting HTML for the entire site will be placed in the _site
directory. The following alternative options are available:

After you build the site, you can run all of the tests (may take awhile)
make test

Or you can build the site and run some quick tests with one command:
make valid

Or build the site and run all tests
make all

Fast Partial Previews Or Builds

In order to preview some changes faster, you can disable all plugins and
languages except those you need by prefixing the ENABLED_LANGS and
ENABLED_PLUGINS environment variables to your command line. For
example, do this to disable everything:

Fast preview, takes less than 30 seconds
ENABLED_PLUGINS="" ENABLED_LANGS="" make preview

Fast build and tests, takes less than 50 seconds
Some tests may fail in fast mode; use -i to continue despite them
ENABLED_PLUGINS="" ENABLED_LANGS="" make -i valid

Then to enable some plugins or languages, you can add them back in.
For example:

Slower (but still pretty fast) build and test
ENABLED_PLUGINS="events autocrossref" ENABLED_LANGS="en fr" make -i valid

Plugins include:

| Plugin | Seconds | Remote APIs | Used For
|————–|———|—————-|————————
| alerts | 5 | – | Network alert pages
| autocrossref | 90 | – | Developer documentation
| contributors | 5 | GitHub.com | Contributor listings
| events | 5 | Meetup.com; Google Maps | Events page
| glossary | 30 | – | Developer glossary
| redirects | 20 | – | Redirects from old URLs
| releases | 10 | – | Bitcoin Core release notes; Download page
| sitemap | 10 | – | /sitemap.xml

Notes: some plugins interact with each other or with translations; for example running
‘autocrossref’ and ‘glossary’ takes longer than running each other
separately. Also, plugins that use remote APIs may take a long time to
run if the API site is running slow.

For a list of languages, look in the _translations directory.

Publishing Previews

You can publish your previews online to any static hosting service.
GitHub pages [https://pages.github.com/] is a free service available to
all GitHub users that works with Bitcoin.org’s site hierarchy.

Before building a preview site, it is recommended that you set the
environmental variable BITCOINORG_BUILD_TYPE to “preview”. This will
enable some content that would otherwise be hidden and also create a
robots.txt file that will help prevent the site from being indexed by
search engines and mistaken for the actual Bitcoin.org website.

In the bash shell, you can do this by running the following command line
before building you preview:

export BITCOINORG_BUILD_TYPE=preview

You can also add this line to your ~/.bashrc file if you frequently
build site previews so that you don’t have to remember to run it for
each shell.

Developer Documentation

Most parts of the documentation can be found in the _includes [https://github.com/bitcoin-dot-org/bitcoin.org/tree/master/_includes]
directory. Updates, fixes and improvements are welcome and can submitted using pull requests on GitHub.

Mailing List: General discussions can take place on the
mailing list [https://groups.google.com/forum/#!forum/bitcoin-documentation].

TODO List: New content and suggestions for improvements can be submitted
to the TODO list [https://github.com/bitcoin-dot-org/bitcoin.org/wiki/Documentation-TODO].
You are also welcome if you want to assign yourself to any task.

Style Guide: For better consistency, the style guide [https://github.com/bitcoin-dot-org/bitcoin.org/wiki/Documentation-Style-Guide]
can be used as a reference for terminology, style and formatting. Suggested changes
can also be submitted to this guide to keep it up to date.

Cross-Reference Links: Cross-reference links can be defined in
_includes/references.md. Terms which should automatically link to these
references are defined in _autocrossref.yaml .

New Glossary Entries

Add new English glossary entries in the _data/glossary/en/ directory.
Copy a previous glossary entry to get the correct YAML variables
(suggest using block.yaml as a template).

Non-English glossary entries are not currently supported. You’ll have
to update the glossary.rb plugin and templates to support them.

New Developer Search terms

You can add new search terms or categories directly to the devsearches
array in _config.yaml. Comments in that file should provide full
documentation.

Translation

How To Translate

You can join a translation team on Transifex [https://www.transifex.com/projects/p/bitcoinorg/] and start translating or improving existing translations.

	You must be a native speaker for the language you choose to translate.

	Please be careful to preserve the original meaning of each text.

	Sentences and popular expressions should sound native in your language.

	You can check the result on the live preview [http://bitcointx.us.to/] and test small changes.

	Translations need to be reviewed by a reviewer or coordinator before publication.

	Once reviewed, translations can be submitted in a pull request on GitHub.

	In doubt, please contact coordinators on Transifex. That’ll be much appreciated.

Import Translations

Update translations: You can update the relevant language file in _translations/ and from the root of the git repository run ./_contrib/updatetx.rb to update layouts and templates for this language. You should also make sure that no url has been changed by translators. If any page needs to be moved, please add redirections.

Add a new language: You can put the language file from Transifex in _translations and add the language in _config.yml in the right display order for the language bar. Make sure to review all pages and check all links.

Update English Strings

Any change in the English text can be done through a pull request on GitHub. If your changes affect the HTML layout of a page, you should apply fallback HTML code for other languages until they are updated.

{% case page.lang %}
{% when 'fr' %}
 (outdated french content)
{% else %}
 (up to date english content)
{% endcase %}

When translation is needed: If you want all changes you’ve made to be re-translated, you can simply update the resource file (en.yml) on Transifex.

When translation is not needed: If you are only pushing typo fixes and that you don’t want translators to redo all their work again, you can use the Transifex client to pull translations, update en.yml and push back all translations at once:

tx init
tx set --auto-remote https://www.transifex.com/projects/p/bitcoinorg/
tx pull -a -s --skip
tx set --source -r bitcoinorg.bitcoinorg -l en translations/bitcoinorg.bitcoinorg/en.yml
(update en.yml)
tx push -s -t -f --skip --no-interactive

Posts

Events

If you’re not comfortable with GitHub pull requests, please submit an
event using the button near the bottom of the Events
page [https://bitcoin.org/en/events].

To create an event pull request, place the event in _events.yml and adhere to this format:

- date: 2014-02-21
 title: "2014 Texas Bitcoin Conference"
 venue: "Circuit of the Americas™ - Technology and Conference Center"
 address: "9201 Circuit of the Americas Blvd"
 city: "Austin, TX"
 country: "United States"
 link: "http://texasbitcoinconference.com/"

Events that have a Meetup.com [http://www.meetup.com/] page with a
publicly-viewable address and “Bitcoin” in the event title should
already be displayed on the events page [https://bitcoin.org/en/events]. (Please open a new
issue [https://github.com/bitcoin-dot-org/bitcoin.org/issues/new] if a Bitcoin meetup event isn’t displayed.)

Release Notes

To create a new Bitcoin Core release, create a new file in the
_releases/ directory. Any file name ending in .md is fine, but we
recommend naming it after the release, such as 0.10.0.md

Then copy in the following YAML header (the part between the three dashes, —):

This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.

Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)
required_version: 0.10.0
Optional release date. May be filled in hours/days after a release
optional_date: 2015-02-16
Optional title. If not set, default is: Bitcoin Core version %v released
optional_title: Bitcoin Core version %v released
Optional magnet link. To get it, open the torrent in a good BitTorrent client
and View Details, or install the transmission-cli Debian/Ubuntu package
and run: transmission-show -m <torrent file>
#
Link should be enclosed in quotes and start with: "magnet:?
optional_magnetlink:

The --- below ends the YAML header. After that, paste the release notes.
Warning: this site's Markdown parser commonly requires you make two
changes to the release notes from the Bitcoin Core source tree:
##
1. Make sure both ordered and unordered lists are preceded by an empty
(whitespace only) line, like the empty line before this list item.
##
2. Place URLs inside angle brackets, like <http://bitcoin.org/bin>

```

Then start at the top of the YAML header and read the comments, filling
in and replacing information as necessary, and then reformatting the
release notes (if necessary) as described by the last lines of the YAML
header.

Download links will automatically be set to the defaults using the current
release version number, but if you need to change any download URL, edit
the file `_templates/download.html`

You can then create a pull request to the
master branch and Travis CI will automatically build it and make sure
the links you provided return a "200 OK" HTTP header. (The actual files
will not be downloaded to save bandwidth.) Alternatively, you can build
the site locally with `make all` to run the same quality assurance tests.

The file can be edited later to add any optional information (such as a
release date) that you didn't have when you created the file.

#### Preparing a release in advance

It's nice to prepare a release pull request in advance so that the
Bitcoin Core developers can just click "Merge Pull Request" when the new
version is released.  Here's the recommended recipe, where `<VERSION>`
is the particular version:

1. Create a new branch named `bitcoin-core-<VERSION>`.  You can either
   do this locally or in GitHub's web GUI.

2. Follow the instructions in the [Release Notes][] section to create a
   new release.  You should leave the `optional_date` blank unless you
   happen to know the date of the planned release.

3. Push the branch to the https://github.com/bitcoin-dot-org/bitcoin.org
   repository so any contributor can edit it. **Don't** open a pull
   request yet.

4. Travis CI will build the site from the branch and then run the tests.
   The tests will fail because they expect the release binaries to be
   present and you're preparing this release request in advance of them
   being uploaded.

5. Open the failed Travis CI log.  At the end, it will say something like:

        ERROR:
        Error: Could not retrieve /bin/bitcoin-core-0.10.1/bitcoin-0.10.1-win64-setup.exe
        Error: Could not retrieve /bin/bitcoin-core-0.10.1/bitcoin-0.10.1-win32-setup.exe
        [...]

6. Copy the errors from above into a text file and remove everything
   except for the URLs so that what's left are lines that look like:

        /bin/bitcoin-core-0.10.1/bitcoin-0.10.1-win64-setup.exe
        /bin/bitcoin-core-0.10.1/bitcoin-0.10.1-win32-setup.exe
        [...]

7. Optional, but nice: sort the lines into alphabetical order.

8. Now open a pull request from the `bitcoin-core-<VERSION>` branch to
   the `master` branch. We recommend that you use this title: "Releases:
   Add Bitcoin Core &lt;VERSION>".

   We recommend that you use the following text with any changes you
   think are appropriate. **Note:** read all the way to the end of this
   enumerated point before submitting your pull request.

        This updates the download links to point to <VERSION> and adds the
        <VERSION> release notes to the site. I'll keep it updated throughout
        the RC cycle, but it can be merged by anyone with commit access
        once <VERSION> final is released (see TODO lists below).

        CC: @laanwj

        Essential TODO:

        * [ ] Make sure the download links work. This is automatically checked as part of the Travis CI build, so trigger a rebuild and, if it passes, this should be safe to merge.

        Optional TODO (may be done in commits after merge):

        * [ ] Add the actual release date to the YAML header in `_releases/0.10.1.md`
        * [ ] Add the magnet URI to the YAML header in `_releases/0.10.1.md` (brief instructions for creating the link are provided as comments in that file)

        Expected URLs for the Bitcoin Core binaries:

    Underneath the line 'Expected URLs', paste the URLs you retrieved
    from Travis CI earlier.

    Note that @laanwj is Wladimir J. van der Laan, who is usually
    responsible for uploading the Bitcoin Core binaries.  If someone
    else is responsible for this release, CC them instead.  If you don't
    know who is responsible, ask in #bitcoin-dev on Freenode.

9. After creating the pull request, use the Labels menu to assign it the
   "Releases" label. This is important because it's what the Bitcoin
   Core release manager will be looking for.

10. After each new Release Candidate (RC) is released, update the
    release notes you created in the `_releases` directory. (But don't
    worry about this too much; we can always upload updated release
    notes after the release.)

### Alerts

1. [Who to contact](#who-to-contact)
2. [Basic alert](#basic-alert) (emergency fast instructions)
3. [Detailed alert](#detailed-alert)
4. [Clearing an alert](#clearing-an-alert)

#### Who to Contact

The following people can publish alerts on Bitcoin.org.  Their email
addresses are on the linked GitHub profiles.

- Saïvann Carignan, [@saivann](https://github.com/saivann), saivann on Freenode
- Dave Harding, [@harding](https://github.com/harding), harding on Freenode
- Wladimir van der Laan, [@laanwj](https://github.com/laanwj), wumpus on Freenode
- Theymos, [@theymos](https://github.com/theymos), theymos on Freenode

Several of the above are only occasionally on Freenode.  Alert
coordination is usually conducted in #bitcoin-dev on Freenode.

#### Basic Alert

1. Open your editor on a file named `_alerts/YYYY-MM-DD-short-title.md`
   (the alert will appear as <https://bitcoin.org/en/alert/YYYY-MM-DD-short-title>).

2. Paste the following text into the top of the file:

    ```

 ## Title displayed on alert page
 title: "11/12 March 2013 Chain Fork"
 ## Short URL for use in P2P network alerts: https://bitcoin.org/<shorturl>
 shorturl: "chainfork"
 ## Active alerts will display the banner (below) on all bitcoin.org content pages
 active: true
 ## Banner displayed if 'active: true'. Can use HTML formatting
 banner: "Chain fork - Please stop mining on bitcoin version 0.8.0. Click here for more information."
 ## Date of the alert in YYYY-MM-DD format
 date: 2015-03-11

 {% comment %}
 First paragraph should indicate whose bitcoins are safe, to avoid
 starting a panic.
 {% comment %}

 Your bitcoins are safe if you received them in transactions
 confirmed before 2015-07-06 00:00 UTC.

 {% comment %}
 Second paragraph should summarize the problem, and subsequent
 text should indicate what people should do immediately.
 Consider: users (by wallet type), merchants, and miners.
 {% comment %}

 However, there has been a problem with a planned upgrade. For
 bitcoins received later than the time above, confirmation scores are
 significantly less reliable then they usually are for users of
 certain software:

 - Lightweight (SPV) wallet users should wait an additional 30
 confirmations more than you would normally wait. Electrum users,
 please see this note.
    ```

- Edit the file.  It is written in [Markdown format][].

- Commit it.

    - **Note:** the commit must be signed by one of the people in the
      [Who to Contact](#who-to-contact) section for site
      auto-building to work.

- Push the commit to the master branch. Rebuilding the site occurs
  automatically and takes 7 to 15 minutes.

    - **Note:** do not push additional commits until the alert is
      displayed on the live site.  The site build aborts and starts over
      when new commits are found.

- Give the `shorturl` URL (`bitcoin.org/<shorturl>`) to the P2P alert message
  key holders to use in any alert messages they send.

- Proceed to the next section to improve the alert.

#### Detailed Alert

In addition to providing more information about how users should respond
to the situation, you can enhance the alert in several ways described
below.

The following fields may be defined in the the alert YAML header:

```yaml

(Required; HTML text) Title displayed on alert page
title: "11/12 March 2013 Chain Fork"
(Optional; display ASCII only) Short URL for use in P2P network alerts: https://bitcoin.org/<shorturl>
shorturl: "chainfork"
(Optional; default=false) Active alerts will display the banner (below) on all bitcoin.org content pages
active: true
(Optional; HTML text) Banner displayed if 'active: true'. Can use HTML formatting
banner: "Chain fork - Please stop mining on bitcoin version 0.8.0. Click here for more information."
(Optional; default=alert) CSS class to set banner color
alert = red | warning = orange | success = green | info = blue
bannerclass: alert

```

The time of the last update should be placed on the page somewhere. UTC
should be used for all dates, and RFC 2822 format ( date -uR ) is
recommended for long dates. For example, place the date in the footer of
the document:

```html
<div style="text-align:right">
 <i>This notice last updated: Thu, 16 May 2013 01:37:00 UTC</i>
</div>
```

You may also want to create a page on the Wiki to allow anyone to
provide additional information.  If you do so, link to it from the
alert.

#### Clearing An Alert

To stop advertising an alert on every Bitcoin.org page, change the YAML
header field `active` to *false*:

```yaml
(Optional; default=false) Active alerts will display the banner (below) on all bitcoin.org content pages
active: false
```

Alternatively, for a few days you can change the message and set the
CSS `bannerclass` to *success* to indicate the problem has been resolved.

```yaml
(Optional; HTML text) Banner displayed if 'active: true'. Can use HTML formatting
banner: "Chain fork - situation resolved"
(Optional; default=alert) CSS class to set banner color
alert = red | warning = orange | success = green | info = blue
bannerclass: success
```

[markdown format]: https://help.github.com/articles/markdown-basics/

## Wallets

The wallet list is based on the personal evaluation of the maintainer(s) and regular contributors of this site, according to the criteria detailed below.

These requirements are meant to be updated and strengthened over time. Innovative wallets are exciting and encouraged, so if your wallet has a good reason for not following some of the rules below, please submit it anyway and we'll consider updating the rules.

Basic requirements:

- Sufficient users and/or developers feedback can be found without concerning issues, or independent security audit(s) is available
- No indication that users have been harmed considerably by any issue in relation to the wallet
- No indication that security issues have been concealed, ignored, or not addressed correctly in order to prevent new or similar issues from happening in the future
- No indication that the wallet uses unstable or unsecure libraries
- No indication that changes to the code are not properly tested
- Wallet was publicly announced and released since at least 3 months
- No concerning bug is found when testing the wallet
- Website supports HTTPS and 301 redirects HTTP requests
- SSL certificate passes [Qualys SSL Labs SSL test](https://www.ssllabs.com/ssltest/)
- Website serving executable code or requiring authentication uses HSTS with a max-age of at least 180 days
- The identity of CEOs and/or developers is public
- Avoid address reuse by displaying a new receiving address for each transaction in the wallet UI
- Avoid address reuse by using a new change address for each transaction
- If private keys or encryption keys are stored online:
  - Refuses weak passwords (short passwords and/or common passwords) used to secure access to any funds, or provides an aggressive account lock-out feature in response to failed login attempts along with a strict account recovery process.
- If user has no access over its private keys:
  - Provides 2FA authentication feature
  - Reminds the user to enable 2FA by email or in the main UI of the wallet
  - User session is not persistent, or requires authentication for spending
  - Provides account recovery feature
- If user has exclusive access over its private keys:
  - Allows backup of the wallet
  - Restoring wallet from backup is working
  - Source code is public and kept up to date under version control system
- If user has no access to some of the private keys in a multi-signature wallet:
  - Provides 2FA authentication feature
  - Reminds the user to enable 2FA by email or in the main UI of the wallet
  - User session is not persistent, or requires authentication for spending
  - Gives control to the user over moving their funds out of the multi-signature wallet
- For hardware wallets:
  - Uses the push model (computer malware cannot sign a transaction without user input)
  - Protects the seed against unsigned firmware upgrades
  - Supports importing custom seeds
  - Provides source code and/or detailed specification for blackbox testing if using a closed-source Secure Element

Optional criteria (some could become requirements):

- Received independent security audit(s)
- Does not show "received from" Bitcoin addresses in the UI
- Uses deterministic ECDSA nonces (RFC 6979)
- Provides a bug reporting policy on the website
- If user has no access over its private keys:
  - Full reserve audit(s)
  - Insurance(s) against failures on their side
  - Reminds the user to enable 2FA in the main UI of the wallet
- If user has exclusive access over its private keys:
  - Supports HD wallets (BIP32)
  - Provides users with step to print or write their wallet seed on setup
  - Uses a strong KDF and key stretching for wallet storage and backups
  - On desktop platform:
    - Encrypt the wallet by default
- For hardware wallets:
  - Prevents downgrading the firmware

### Adding a wallet

*Before adding a wallet,* please make sure your wallet meets all of the
Basic Requirements listed above, or open a [new issue][] to request an
exemption or policy change. Feel free to email Dave Harding
<dave@dtrt.org> if you have any questions.

Wallets can be added in `_templates/choose-your-wallet.html`. Entries are ordered by levels and new wallets must be added after the last wallet on the same level.

* Level 1 - Full nodes
* Level 2 - SPV, Random servers
* Level 3 - Hybrid, Multisig wallets
* Level 4 - Web wallets

**Screenshot**: The png files must go in `/img/screenshots`, be 250 X 350 px and optimized with `optipng -o7 file.png`.

**Icon**: The png file must go in `/img/wallet`, be 144 X 144 px and optimized with `optipng -o7 file.png`. The icon must fit within 96 X 96 px inside the png, or 85 X 85 px for square icons.

**Description**: The text must go in `_translations/en.yml` alongside other wallets' descriptions.

### Score

Each wallet is assigned a score for five criteria. For each of them, the appropriate text in `_translations/en.yml` needs to be chosen.

**Control** - What control the user has over his bitcoins?

To get a good score, the wallet must provide the user with full exclusive control over their bitcoins.

To get a passing score, the wallet must provide the user with exclusive control over their bitcoins. Encrypted online backups are accepted so long as only the user can decrypt them. Multisig wallets are accepted so long as only the user can spend without the other party's permission.

**Validation** - How secure and « zero trust » is payment processing?

To get a good score, the wallet must be a full node and need no trust on other nodes.

To get a passing score, the wallet must rely on random nodes, either by using the SPV model or a pre-populated list or servers.

**Transparency** - How transparent and « zero trust » is the source code?

To get a good score, the wallet must deserve a passing score and be built deterministically.

To get a passing score, the wallet must be open-source, under version control and releases must be clearly identified (e.g. by tags or commits). The codebase and final releases must be public since at least 6 months and previous commits must remain unchanged.

**Environment** - How secure is the environment of the wallet?

To get a good score, the wallet must run from an environment where no apps can be installed.

To get a passing score, the wallet must run from an environment that provides app isolation (e.g. Android, iOS), or require two-factor authentication for spending.

**Privacy**: Does the wallet protect users' privacy?

To get a good score, the wallet must avoid address reuse by using a new change address for each transaction, avoid disclosing information to peers or central servers and be compatible with Tor.

To get a passing score, the wallet must avoid address reuse by using a new change address for each transaction.


## Advanced Usage

### Redirections

Redirections can be defined in ```_config.yml```.

```
 /news: /en/version-history
```

### Aliases For Contributors

Aliases for contributors are defined in ```_config.yml```.

```
aliases:
 s_nakamoto: Satoshi Nakamoto
 --author=Satoshi Nakamoto: Satoshi Nakamoto
 gavinandresen: Gavin Andresen
```

### Blog Posts

Posts for the [Bitcoin.org Site Blog][] should be added to the `_posts`
directory with the naming convention:
`YEAR-MONTH-DAY-ARBITRARY_FILE_NAME` (with year, month, and day as
two-digit numbers).  The YAML front matter should be similar to this:

    ---
    type: posts
    layout: post
    lang: en
    category: blog

    title: "Quarterly Report March 2015"
    permalink: /en/posts/quarterly-report-march-2015.html
    date: 2015-03-05
    author: >
      David A. Harding (<a href="mailto:dave@dtrt.org">email</a>, <a
      href="https://github.com/harding">GitHub</a>,
      <a href="http://www.reddit.com/user/harda/">Reddit</a>)
    ---

The type, layout, and category should always be as specified above. The
other parameters should be set to values specific to that post, but the
permalink must end in '.html'.

Below the YAML front matter, enter the content of the post in Markdown
format.  Images should be placed in `img/blog/free` if they are
MIT-licensed or `img/blog/nonfree` if they have a more restrictive
copyright license.

### Developer PGP keys

The site hosts the PGP keys for several Bitcoin Core contributors. Here
are some notes about updating those keys based on previous experience:

1. If a key is revoked, update the key with the revocation immediately.
   Anyone with commit access to the site repository may do this without
   prior review, but they should post the commit ID to an open issue or
   PR so other people can review it. After the revoked key is uploaded,
   discussion about verifying/adding a replacement key may continue at a
   slower pace.











          

      

      

    

  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.1
optional_date: 2013-03-18
title: Bitcoin-Qt version 0.8.1 released



Bitcoin-Qt version 0.8.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.1/

This is a maintenance release that adds a new network rule to avoid
a chain-forking incompatibility with versions 0.7.2 and earlier.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.1 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.1 Release notes

The 0.8.1 release has just two changes from the 0.8.0 release:


	A new block-acceptance rule that will be enforced from 21 March 2013 until
15 May 2013 to prevent accepting blocks that fail to validate on pre-0.8 peers.

	A new compiled-in checkpoint at block number 225,430 – the first block
of the 11 March 2013 chain fork.






0.8.0 Release notes


Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).




Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices.  LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.




New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).




New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.




New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.




Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.




Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)




Thanks to everybody who contributed to the 0.8.0 release:


	Alexander Kjeldaas

	Andrey Alekseenko

	Arnav Singh

	Christian von Roques

	Eric Lombrozo

	Forrest Voight

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Mike Cassano

	Mike Hearn

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	Richard Schwab

	Robert Backhaus

	Rune K. Svendsen

	Sergio Demian Lerner

	Wladimir J. van der Laan

	burger2

	default

	fanquake

	grimd34th

	justmoon

	redshark1802

	tucenaber

	xanatos









          

      

      

    

  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.9.2
optional_date: 2014-06-16
title: Bitcoin Core version 0.9.2 released



Bitcoin Core version 0.9.2 is now available from:

https://bitcoin.org/bin/0.9.2/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues






Upgrading and downgrading


How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.




Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).






Important changes


Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.




Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with


	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5








0.9.2 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:


	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit



Command-line options:


	Fix -printblocktree output

	Show error message if ReadConfigFile fails



Block-chain handling and storage:


	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17



Protocol and network code:


	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)



Wallet:


	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix



Build system:


	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting



GUI:


	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”



Miscellaneous:


	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations




Credits

Thanks to everyone who contributed to this release:


	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai









          

      

      

    

  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.5.3
optional_date: 2012-03-14
title: Bitcoin-Qt version 0.5.3 released



Bitcoin-Qt version 0.5.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.
It also includes a few protocol updates.

Please report bugs using the issue tracker at GitHub:
https://github.com/bitcoin/bitcoin/issues




PROTOCOL UPDATES


	BIP 30: Introduce a new network rule: “a block is not valid if it contains
a transaction whose hash already exists in the block chain, unless all that
transaction’s outputs were already spent before said block” beginning on
March 15, 2012, 00:00 UTC.

	On testnet, allow mining of min-difficulty blocks if 20 minutes have gone
by without mining a regular-difficulty block. This is to make testing
Bitcoin easier, and will not affect normal mode.






BUG FIXES


	Limit the number of orphan transactions stored in memory, to prevent a
potential denial-of-service attack by flooding orphan transactions. Also
never store invalid transactions at all.

	Fix possible buffer overflow on systems with very long application data
paths. This is not exploitable.

	Resolved multiple bugs preventing long-term unlocking of encrypted wallets
(issue #922).

	Only send local IP in “version” messages if it is globally routable (ie,
not private), and try to get such an IP from UPnP if applicable.

	Reannounce UPnP port forwards every 20 minutes, to workaround routers
expiring old entries, and allow the -upnp option to override any stored
setting.

	Skip splash screen when -min is used, and fix Minimize to Tray function.

	Do not blank “label” in Bitcoin-Qt “Send” tab, if the user has already
entered something.

	Correct various labels and messages.

	Various memory leaks and potential null pointer deferences have been
fixed.

	Handle invalid Bitcoin URIs using “bitcoin://” instead of “bitcoin:”.

	Several shutdown issues have been fixed.

	Revert to “global progress indication”, as starting from zero every time
was considered too confusing for many users.

	Check that keys stored in the wallet are valid at startup, and if not,
report corruption.

	Enable accessible widgets on Windows, so that people with screen readers
such as NVDA can make sense of it.

	Various build fixes.

	If no password is specified to bitcoind, recommend a secure password.

	Automatically focus and scroll to new “Send coins” entries in Bitcoin-Qt.

	Show a message box for –help on Windows, for Bitcoin-Qt.

	Add missing “About Qt” menu option to show built-in Qt About dialog.

	Don’t show “-daemon” as an option for Bitcoin-Qt, since it isn’t
available.

	Update hard-coded fallback seed nodes, choosing recent ones with long
uptime and versions at least 0.4.0.

	Add checkpoint at block 168,000.









          

      

      

    

  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.9.2.1
optional_date: 2014-06-19
title: Bitcoin Core version 0.9.2.1 released



Bitcoin Core version 0.9.2.1 is now available from:

https://bitcoin.org/bin/0.9.2.1/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues






Upgrading and downgrading


How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.




Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).






Important changes


Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.




Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with


	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5








0.9.2 - 0.9.2.1 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:


	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit



Command-line options:


	Fix -printblocktree output

	Show error message if ReadConfigFile fails



Block-chain handling and storage:


	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17



Protocol and network code:


	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)



Wallet:


	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix



Build system:


	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting



GUI:


	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”



Miscellaneous:


	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations




Credits

Thanks to everyone who contributed to this release:


	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai









          

      

      

    

  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)

required_version: 0.12.0




Required title.

title: Bitcoin Core version 0.12.0 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2016-02-23




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.5.0
optional_date: 2011-11-21
title: Bitcoin-Qt version 0.5.0 released



Bitcoin-Qt version 0.5.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.0/

The major change for this release is a completely new graphical
that uses the Qt user interface toolkit.

This release includes German, Spanish, Spanish-Castilian, Norwegian
and Dutch translations. More translations are welcome; join the
project at Transifex if you can help:
https://www.transifex.com/projects/p/bitcoin/

Please report bugs using the issue tracker at GitHub:
https://github.com/bitcoin/bitcoin/issues




MAJOR BUG FIX  (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0
did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be
able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you
run bitcoin-qt or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new,
properly encrypted file.

If you had a previously encrypted wallet.dat that might have been
copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself
using a new bitcoin address and stop using any previously
generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the
first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:


	Run Bitcoin and let it rewrite the wallet.dat file



	Run it again, then ask it for a new bitcoin address.

Bitcoin-Qt: Address Book, then New Address...

bitcoind: run the walletpassphrase RPC command to unlock the wallet,
then run the getnewaddress RPC command.



	If your encrypted wallet.dat may have been copied or stolen, send
all of your bitcoins to the new bitcoin address.



	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before
backing up, so that the ‘keypool’ is regenerated and backed up.





“Security in depth” is always a good idea, so choosing a secure
location for the backup and/or encrypting the backup before
uploading it is recommended. And as in previous releases, if your
machine is infected by malware there are several ways an
attacker might steal your bitcoins.

Thanks to Alan Reiner (aka etotheipi) for finding and reporting
this bug.




MAJOR GUI CHANGES


	“Splash” graphics at startup that show address/wallet/blockchain loading
progress.

	“Synchronizing with network” progress bar to show block-chain download
progress.

	Icons at the bottom of the window that show how well connected you are
to the network, with tooltips to display details.

	Drag and drop support for bitcoin: URIs on web pages.

	Export transactions as a .csv file.

	Many other GUI improvements, large and small.






RPC CHANGES


	getmemorypool : new RPC command, provides everything needed to construct
a block with a custom generation transaction and submit a solution

	listsinceblock : new RPC command, list transactions since given block

	signmessage/verifymessage : new RPC commands to sign a message with
one of your private keys or verify that a message signed by the private
key associated with a bitcoin address.






GENERAL CHANGES


	Faster initial block download.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.3.21
optional_date: 2011-04-27
title: Bitcoin version 0.3.21 released



Binaries for Bitcoin version 0.3.21 are available at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.21/

Changes and new features from the 0.3.20 release include:


	Universal Plug and Play support.  Enable automatic opening of a port
for incoming connections by running bitcoin or bitcoind with the




	-upnp=1 command line switch or using the Options dialog box.




	Support for full-precision bitcoin amounts.  You can now send, and
bitcoin will display, bitcoin amounts smaller than 0.01.  However,
sending fewer than 0.01 bitcoins still requires a 0.01 bitcoin fee (so
you can send 1.0001 bitcoins without a fee, but you will be asked to
pay a fee if you try to send 0.0001).

	A new method of finding bitcoin nodes to connect with, via DNS A
records. Use the -dnsseed option to enable.



For developers, changes to bitcoin’s remote-procedure-call API:


	New rpc command “sendmany” to send bitcoins to more than one address
in a single transaction.

	Several bug fixes, including a serious intermittent bug that would
sometimes cause bitcoind to stop accepting rpc requests.

	-logtimestamps option, to add a timestamp to each line in debug.log.

	Immature blocks (newly generated, under 120 confirmations) are now
shown in listtransactions.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.6
optional_date: 2013-12-09
title: Bitcoin-Qt version 0.8.6 released



Bitcoin-Qt version 0.8.6 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.6/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.6 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.6 Release notes


	Default block size increase for miners.
(see https://gist.github.com/gavinandresen/7670433#086-accept-into-block)

	Remove the all-outputs-must-be-greater-than-CENT-to-qualify-as-free rule for relaying
(see https://gist.github.com/gavinandresen/7670433#086-relaying)

	Lower maximum size for free transaction creation
(see https://gist.github.com/gavinandresen/7670433#086-wallet)

	OSX block chain database corruption fixes
	Update leveldb to 1.13

	Use fcntl with F_FULLSYNC instead of fsync on OSX

	Use native Darwin memory barriers

	Replace use of mmap in leveldb for improved reliability (only on OSX)





	Fix nodes forwarding transactions with empty vins and getting banned

	Network code performance and robustness improvements

	Additional debug.log logging for diagnosis of network problems, log timestamps by default

	Fix Bitcoin-Qt startup crash when clicking dock icon on OSX

	Fix memory leaks in CKey::SetCompactSignature() and Key::SignCompact()

	Fix rare GUI crash on send

	Various small GUI, documentation and build fixes




Warning


	There have been frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync.
Hence it is recommended to use a 64-bit executable if possible.
A 64-bit executable for Windows is planned for 0.9.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.4.0
optional_date: 2011-09-23
title: Bitcoin version 0.4.0 released



Full announcement (including signatures) [http://sourceforge.net/mailarchive/message.php?msg_id=28132490]

Bitcoin version 0.4.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.0/

The main feature in this release is wallet private key encryption;
you can set a passphrase that must be entered before sending coins.
See below for more information; if you decide to encrypt your wallet,
WRITE DOWN YOUR PASSPHRASE AND PUT IT IN A SECURE LOCATION. If you
forget or lose your wallet passphrase, you lose your bitcoins.
Previous versions of bitcoin are unable to read encrypted wallets,
and will crash on startup if the wallet is encrypted.

Also note: bitcoin version 0.4 uses a newer version of Berkeley DB
(bdb version 4.8) than previous versions (bdb 4.7). If you upgrade
to version 0.4 and then revert back to an earlier version of bitcoin
the it may be unable to start because bdb 4.7 cannot read bdb 4.8
“log” files.




Notable bug fixes from version 0.3.24


	Fix several bitcoin-becomes-unresponsive bugs due to multithreading
deadlocks.

	Optimize database writes for large (lots of inputs) transactions
(fixes a potential denial-of-service attack)






Wallet Encryption

Bitcoin supports native wallet encryption so that people who steal your
wallet file don’t automatically get access to all of your Bitcoins.
In order to enable this feature, chose “Encrypt Wallet” from the
Options menu.  You will be prompted to enter a passphrase, which
will be used as the key to encrypt your wallet and will be needed
every time you wish to send Bitcoins.  If you lose this passphrase,
you will lose access to spend all of the bitcoins in your wallet,
no one, not even the Bitcoin developers can recover your Bitcoins.
This means you are responsible for your own security, store your
passphrase in a secure location and do not forget it.

Remember that the encryption built into bitcoin only encrypts the
actual keys which are required to send your bitcoins, not the full
wallet.  This means that someone who steals your wallet file will
be able to see all the addresses which belong to you, as well as the
relevant transactions, you are only protected from someone spending
your coins.

It is recommended that you backup your wallet file before you
encrypt your wallet.  To do this, close the Bitcoin client and
copy the wallet.dat file from ~/.bitcoin/ on Linux, /Users/(user name)/Library/Application Support/Bitcoin/ on Mac OSX, and %APPDATA%/Bitcoin/
on Windows (that is /Users/(user name)/AppData/Roaming/Bitcoin on
Windows Vista and 7 and /Documents and Settings/(user name)/Application Data/Bitcoin on Windows XP).  Once you have copied that file to a
safe location, reopen the Bitcoin client and Encrypt your wallet.
If everything goes fine, delete the backup and enjoy your encrypted
wallet.  Note that once you encrypt your wallet, you will never be
able to go back to a version of the Bitcoin client older than 0.4.

Keep in mind that you are always responsible for your own security.
All it takes is a slightly more advanced wallet-stealing trojan which
installs a keylogger to steal your wallet passphrase as you enter it
in addition to your wallet file and you have lost all your Bitcoins.
Wallet encryption cannot keep you safe if you do not practice
good security, such as running up-to-date antivirus software, only
entering your wallet passphrase in the Bitcoin client and using the
same passphrase only as your wallet passphrase.

See the doc/README file in the bitcoin source for technical details
of wallet encryption.







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)

required_version: 0.11.1




Required title.

title: Bitcoin Core version 0.11.1 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-10-15




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.5.1
optional_date: 2011-12-15
title: Bitcoin-Qt version 0.5.1 released



Bitcoin-Qt version 0.5.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.1/

This is a bugfix-only release.

This release includes 13 translations, including 5 new translations:
Italian, Hungarian, Ukranian, Portuguese (Brazilian) and Simplified Chinese.
More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.com/projects/p/bitcoin/

Please report bugs using the issue tracker at GitHub:
https://github.com/bitcoin/bitcoin/issues

For Ubuntu users, there is a new ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date.  Just type

sudo apt-add-repository ppa:bitcoin/bitcoin





in your terminal, then install the bitcoin-qt package.




BUG FIXES


	Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 release binaries).

	The code that finds peers via “dns seeds” no longer stops bitcoin startup
if one of the dns seed machines is down.

	Tooltips on the transaction list view were rendering incorrectly (as black boxes
or with a transparent background).

	Prevent a denial-of-service attack involving flooding a bitcoin node with
orphan blocks.

	The wallet passphrase dialog now warns you if the caps lock key was pressed.

	Improved searching in addresses and labels in bitcoin-qt.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.5.3.1
optional_date: 2012-03-16
title: Bitcoin-Qt version 0.5.3.1 released



Bitcoin-Qt version 0.5.3.1 for Windows is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.

Please report bugs using the issue tracker at GitHub:
https://github.com/bitcoin/bitcoin/issues




BUG FIXES


	Fixed a potentially critical security vulnerability in Windows
versions of Bitcoin-Qt.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required release version.

required_version: 0.10.1




Required title.

title: Bitcoin Core version 0.10.1 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-04-27




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.2
optional_date: 2013-05-29
title: Bitcoin-Qt version 0.8.2 released



Bitcoin-Qt version 0.8.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.2/

This is a maintenance release that fixes many bugs and includes
a few small new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.2 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.2 Release notes


Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.




Bitcoin-Qt changes


	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations



MacOSX:


	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)



Linux/Unix:


	Copy addresses to middle-mouse-button clipboard






Command-line options


	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.






JSON-RPC API changes


	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address infromation.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.






Networking changes


	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.






Wallet compatibility/rescuing


	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.






Known Bugs


	Entering the getblocktemplate or getwork RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.






Thanks to everybody who contributed to the 0.8.2 release!


	APerson241

	Andrew Poelstra

	Calvin Owens

	Chuck LeDuc Díaz

	Colin Dean

	David Griffith

	David Serrano

	Eric Lombrozo

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Jonas Schnelli

	Larry Gilbert

	Luke Dashjr

	Matt Corallo

	Michael Ford

	Mike Hearn

	Patrick Brown

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	Richard Schwab

	Roman Mindalev

	Scott Howard

	Tariq Bashir

	Warren Togami

	Wladimir J. van der Laan

	freewil

	gladoscc

	kjj2

	mb300sd

	super3









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.7.1
optional_date: 2012-10-19
title: Bitcoin-Qt version 0.7.1 released



Bitcoin-Qt version 0.7.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.1/

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.1  # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.1  # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
up-to-date.  Just type:
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt




KNOWN ISSUES

Mac OSX 10.5 is no longer supported.




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.




New features


	Added a boolean argument to the RPC stop command, if true sets
-detachdb to create standalone database .dat files before shutting down.

	-salvagewallet command-line option, which moves any existing wallet.dat
to wallet.{timestamp}.dat and then attempts to salvage public/private
keys and master encryption keys (if the wallet is encrypted) into
a new wallet.dat. This should only be used if your wallet becomes
corrupted, and is not intended to replace regular wallet backups.

	Import $DataDir/bootstrap.dat automatically, if it exists.






Dependency changes


	Qt 4.8.2 for Windows builds

	openssl 1.0.1c






Bug fixes


	Clicking on a bitcoin: URI on Windows should now launch Bitcoin-Qt properly.

	When running -testnet, use RPC port 18332 by default.

	Better detection and handling of corrupt wallet.dat and blkindex.dat files.
Previous versions would crash with a DB_RUNRECOVERY exception, this
version detects most problems and tells you how to recover if it
cannot recover itself.

	Fixed an uninitialized variable bug that could cause transactions to
be reported out of order.

	Fixed a bug that could cause occasional crashes on exit.

	Warn the user that they need to create fresh wallet backups after they
encrypt their wallet.





Thanks to everybody who contributed to this release:


	Gavin Andresen

	Jeff Garzik

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Philip Kaufmann

	Pieter Wuille

	Rune K. Svendsen

	Virgil Dupras

	Wladimir J. van der Laan

	fanquake

	kjj2

	xanatos









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.6.0
optional_date: 2012-03-30
title: Bitcoin-Qt version 0.6.0 released



Bitcoin-Qt version 0.6.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/

This release includes more than 20 language localizations.
More translations are welcome; join the
project at Transifex to help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.6.0  # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.6.0  # .zip

For Ubuntu users, there is a ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date.  Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.




KNOWN ISSUES

Shutting down while synchronizing with the network
(downloading the blockchain) can take more than a minute,
because database writes are queued to speed up download
time.




NEW FEATURES SINCE BITCOIN VERSION 0.5

Initial network synchronization should be much faster
(one or two hours on a typical machine instead of ten or more
hours).

Backup Wallet menu option.

Bitcoin-Qt can display and save QR codes for sending
and receiving addresses.

New context menu on addresses to copy/edit/delete them.

New Sign Message dialog that allows you to prove that you
own a bitcoin address by creating a digital
signature.

New wallets created with this version will
use 33-byte ‘compressed’ public keys instead of
65-byte public keys, resulting in smaller
transactions and less traffic on the bitcoin
network. The shorter keys are already supported
by the network but wallet.dat files containing
short keys are not compatible with earlier
versions of Bitcoin-Qt/bitcoind.

New command-line argument -blocknotify=<command>
that will spawn a shell process to run <command>
when a new block is accepted.

New command-line argument -splash=0 to disable
Bitcoin-Qt’s initial splash screen

validateaddress JSON-RPC api command output includes
two new fields for addresses in the wallet:
pubkey : hexadecimal public key
iscompressed : true if pubkey is a short 33-byte key

New JSON-RPC api commands for dumping/importing
private keys from the wallet (dumprivkey, importprivkey).

New JSON-RPC api command for getting information about
blocks (getblock, getblockhash).

New JSON-RPC api command (getmininginfo) for getting
extra information related to mining. The getinfo
JSON-RPC command no longer includes mining-related
information (generate/genproclimit/hashespersec).




NOTABLE CHANGES

BIP30 implemented (security fix for an attack involving
duplicate “coinbase transactions”).

The -nolisten, -noupnp and -nodnsseed command-line
options were renamed to -listen, -upnp and -dnsseed,
with a default value of 1. The old names are still
supported for compatibility (so specifying -nolisten
is automatically interpreted as -listen=0; every
boolean argument can now be specified as either
-foo or -nofoo).

The -noirc command-line options was renamed to
-irc, with a default value of 0. Run -irc=1 to
get the old behavior.

Three fill-up-available-memory denial-of-service
attacks were fixed.




NOT YET IMPLEMENTED FEATURES

Support for clicking on bitcoin: URIs and
opening/launching Bitcoin-Qt is available only on Linux,
and only if you configure your desktop to launch
Bitcoin-Qt. All platforms support dragging and dropping
bitcoin: URIs onto the Bitcoin-Qt window to start
payment.




PRELIMINARY SUPPORT FOR MULTISIGNATURE TRANSACTIONS

This release has preliminary support for multisignature
transactions– transactions that require authorization
from more than one person or device before they
will be accepted by the bitcoin network.

Prior to this release, multisignature transactions
were considered ‘non-standard’ and were ignored;
with this release multisignature transactions are
considered standard and will start to be relayed
and accepted into blocks.

It is expected that future releases of Bitcoin-Qt
will support the creation of multisignature transactions,
once enough of the network has upgraded so relaying
and validating them is robust.

For this release, creation and testing of multisignature
transactions is limited to the bitcoin test network using
the “addmultisigaddress” JSON-RPC api call.

Short multisignature address support is included in this
release, as specified in BIP 13 and BIP 16.

Thanks to everybody who contributed to this release:


	Alex B

	Alistair Buxton

	Chris Moore

	Clark Gaebel

	Daniel Folkinshteyn

	Dylan Noblesmith

	Forrest Voight

	Gavin Andresen

	Gregory Maxwell

	Janne Pulkkinen

	Joel Kaartinen

	Lars Rasmusson

	Luke Dashjr

	Matt Corallo

	Michael Ford

	Michael Hendricks

	Nick Bosma

	Nils Schneider

	Philip Kaufmann

	Pierre Pronchery

	Pieter Wuille

	Rune K Svendsen

	Wladimir J. van der Laan

	coderrr

	p2k

	sje397



Special thanks to Sergio Lerner and Matt Corallo for bringing
potential denial-of-service attacks to our attention.







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required release version.

required_version: 0.10.0




Required title.

title: Bitcoin Core version 0.10.0 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-02-16




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.9.3
optional_date: 2014-09-27
title: Bitcoin Core version 0.9.3 released



Bitcoin Core version 0.9.3 is now available from:

https://bitcoin.org/bin/0.9.3/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues






Upgrading and downgrading


How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.3 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.




Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).






0.9.3 Release notes

RPC:


	Avoid a segfault on getblock if it can’t read a block from disk

	Add paranoid return value checks in base58



Protocol and network code:


	Don’t poll showmyip.com, it doesn’t exist anymore

	Add a way to limit deserialized string lengths and use it

	Add a new checkpoint at block 295,000

	Increase IsStandard() scriptSig length

	Avoid querying DNS seeds, if we have open connections

	Remove a useless millisleep in socket handler

	Stricter memory limits on CNode

	Better orphan transaction handling

	Add -maxorphantx=<n> and -maxorphanblocks=<n> options for control over the maximum orphan transactions and blocks



Wallet:


	Check redeemScript size does not exceed 520 byte limit

	Ignore (and warn about) too-long redeemScripts while loading wallet



GUI:


	fix ‘opens in testnet mode when presented with a BIP-72 link with no fallback’

	AvailableCoins: acquire cs_main mutex

	Fix unicode character display on MacOSX



Miscellaneous:


	key.cpp: fail with a friendlier message on missing ssl EC support

	Remove bignum dependency for scripts

	Upgrade OpenSSL to 1.0.1i (see https://www.openssl.org/news/secadv_20140806.txt - just to be sure, no critical issues for Bitcoin Core)

	Upgrade miniupnpc to 1.9.20140701

	Fix boost detection in build system on some platforms




Credits

Thanks to everyone who contributed to this release:


	Andrew Poelstra

	Cory Fields

	Gavin Andresen

	Jeff Garzik

	Johnathan Corgan

	Julian Haight

	Michael Ford

	Pavel Vasin

	Peter Todd

	phantomcircuit

	Pieter Wuille

	Rose Toomey

	Ruben Dario Ponticelli

	shshshsh

	Trevin Hofmann

	Warren Togami

	Wladimir J. van der Laan

	Zak Wilcox



As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.6.3
optional_date: 2012-06-25
title: Bitcoin-Qt version 0.6.3 released



Bitcoin-Qt version 0.6.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.3/

This is a bug-fix release, with no new features.






CHANGE SUMMARY

Fixed a serious denial-of-service attack that could cause the
bitcoin process to become unresponsive. Thanks to Sergio Lerner
for finding and responsibly reporting the problem. (CVE-2012-3789)

Optimized the process of checking transaction signatures, to
speed up processing of new block messages and make propagating
blocks across the network faster.

Fixed an obscure bug that could cause the bitcoin process to get
stuck on an invalid block-chain, if the invalid chain was
hundreds of blocks long.

Bitcoin-Qt no longer automatically selects the first address
in the address book (Issue #1384).

Fixed minimize-to-dock behavior of Bitcon-Qt on the Mac.

Added a block checkpoint at block 185,333 to speed up initial
blockchain download.




Thanks to everybody who contributed to this release:


	Chris Moore

	Christian von Roques

	Fordy

	Gavin Andresen

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Michael Hendricks

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	R E Broadley

	Sergio Lerner

	Wladimir J. van der Laan







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.9.1
optional_date: 2014-04-08
title: Bitcoin Core version 0.9.1 released



Bitcoin Core version 0.9.1 is now available from:

https://bitcoin.org/bin/0.9.1/

This is a security update. It is recommended to upgrade to this release
as soon as possible.

It is especially important to upgrade if you currently have version
0.9.0 installed and are using the graphical interface OR you are using
bitcoind from any pre-0.9.1 version, and have enabled SSL for RPC and
have configured allowip to allow rpc connections from potentially
hostile hosts.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.




0.9.1 Release notes

No code changes were made between 0.9.0 and 0.9.1. Only the dependencies were changed.


	Upgrade OpenSSL to 1.0.1g. This release fixes the following vulnerabilities which can
affect the Bitcoin Core software:
	CVE-2014-0160 (“heartbleed”)
A missing bounds check in the handling of the TLS heartbeat extension can
be used to reveal up to 64k of memory to a connected client or server.

	CVE-2014-0076
The Montgomery ladder implementation in OpenSSL does not ensure that
certain swap operations have a constant-time behavior, which makes it
easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache
side-channel attack.





	Add statically built executables to Linux build






Credits

Credits go to the OpenSSL team for fixing the vulnerabilities quickly.







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.3.23
optional_date: 2011-06-14
title: Bitcoin version 0.3.23 released



Win32, Linux, MacOSX and source releases for bitcoin v0.3.23 have been uploaded to
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.23/

This is another quick bugfix release, trying to deal with the influx of new bitcoin users.

Priority for next version:  wallet encryption

Main items of note:

P2P connect-to-node logic changed to reduce timeout a bit.  The network saw a huge influx of new users, who do not permit incoming connections.  This change is a short-term hack, to more quickly hunt for useful P2P connections.  Better “leaf node” logic is in the works, but this should let us limp along until then.  One may use -upnp to properly forward ports, and help the network.
Transaction fee reduced to 0.0005 for new transactions (see note below)
Client will relay transactions with fees as low as 0.0001 BTC (see note below)

NOTE:  There has been some fee confusion recently.  Free transactions are supported and relayed as they always have been, according to special anti-spam rules.  See https://en.bitcoin.it/wiki/Transaction_fees for details.

There were no changes between -rc1 and -final.







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.5.2
optional_date: 2012-01-09
title: Bitcoin-Qt version 0.5.2 released



Bitcoin-Qt version 0.5.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.2/

This is a bugfix-only release.

Please report bugs using the issue tracker at GitHub:
https://github.com/bitcoin/bitcoin/issues




BUG FIXES


	Check all transactions in blocks after the last checkpoint (0.5.0 and 0.5.1
skipped checking ECDSA signatures during initial blockchain download; this was
not a security vulnerability).

	Cease locking memory used by non-sensitive information (this caused a huge
performance hit on some platforms, especially noticable during initial blockchain
download).

	Fixed some address-handling deadlocks (client freezes).

	No longer accept inbound connections over the internet when Bitcoin is being
used with Tor (identity leak).

	Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 and 0.5.1 release Linux binaries).

	Use the correct base transaction fee of 0.0005 BTC for accepting transactions
into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was
only meant to be relayed).

	Don’t show “IP” for transactions which are not necessarily IP transactions.

	Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.7.0
optional_date: 2012-09-17
title: Bitcoin-Qt version 0.7.0 released



Bitcoin-Qt version 0.7.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.0/

We recommend that everybody running prior versions of bitcoind/Bitcoin-Qt
upgrade to this release, except for users running Mac OSX 10.5.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.0  # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.0  # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
bitcoin up-to-date.  Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using the
PPA and are switching to the binary release), then run the old version again
with the -detachdb argument and shut it down; if you do not, then the new
version will not be able to read the database files and will exit with an error.




Incompatible Changes


	Replaced the getmemorypool RPC command with getblocktemplate/submitblock
and getrawmempool commands.

	Remove deprecated RPC getblocknumber






Bitcoin Improvement Proposals implemented

BIP 22 - getblocktemplate, submitblock RPCs
BIP 34 - block version 2, height in coinbase
BIP 35 - mempool message, extended getdata message behavior




Core bitcoin handling and blockchain database


	Reduced CPU usage, by eliminating some redundant hash calculations

	Cache signature verifications, to eliminate redundant signature checks

	Transactions with zero-value outputs are considered non-standard

	Mining: when creating new blocks, sort ‘paid’ area by fee-per-kb

	Database: better validation of on-disk stored data

	Database: minor optimizations and reliability improvements

	-loadblock=FILE will import an external block file

	Additional DoS (denial-of-service) prevention measures

	New blockchain checkpoint at block 193,000






JSON-RPC API


	Internal HTTP server is now thread-per-connection, rather than
a single-threaded queue that would stall on network I/O.

	Internal HTTP server supports HTTP/1.1, pipelined requests and
connection keep-alive.

	Support JSON-RPC 2.0 batches, to encapsulate multiple JSON-RPC requests
within a single HTTP request.

	IPv6 support

	Added raw transaction API.  See https://gist.github.com/2839617

	Added getrawmempool, to list contents of TX memory pool

	Added getpeerinfo, to list data about each connected network peer

	Added listaddressgroupings for better coin control

	Rework getblock call.

	Remove deprecated RPC getblocknumber

	Remove superceded RPC getmemorypool (see BIP 22, above)

	listtransactions output now displays “smart” times for transactions,
and blocktime and timereceived fields were added






P2P networking


	IPv6 support

	Tor hidden service support (see doc/Tor.txt)

	Attempts to fix “stuck blockchain download” problems

	Replace BDB database “addr.dat” with internally-managed “peers.dat”
file containing peer address data.

	Lower default send buffer from 10MB to 1MB

	proxy: SOCKS5 by default

	Support connecting by hostnames passed to proxy

	Add -seednode connections, and use this instead of DNS seeds when proxied

	Added -externalip and -discover

	Add -onlynet to connect only to a given network (IPv4, IPv6, or Tor)

	Separate listening sockets, -bind=<addr>






Qt GUI


	Add UI RPC console / debug window

	Re-Enable URI handling on Windows, add safety checks and tray-notifications

	Harmonize the use of ellipsis (”...”) to be used in menus, but not on buttons

	Add 2 labels to the overviewpage that display Wallet and Transaction status (obsolete or current)

	Extend the optionsdialog (e.g. language selection) and re-work it to a tabbed UI

	Merge sign/verify message into a single window with tabbed UI

	Ensure a changed bitcoin unit immediately updates all GUI elements that use units

	Update QR Code dialog

	Improve error reporting at startup

	Fine-grained UI updates for a much smoother UI during block downloads

	Remove autocorrection of 0/i in addresses in UI

	Reorganize tray icon menu into more logical order

	Persistently poll for balance change when number of blocks changed

	Much better translations

	Override progress bar design on platforms with segmented progress bars to assist with readability

	Added ‘immature balance’ display on the overview page

	(Windows only): enable ASLR and DEP for bitcoin-qt.exe

	(Windows only): add meta-data to bitcoin-qt.exe (e.g. description)






Internal codebase


	Additional unit tests

	Compile warning fixes






Miscellaneous


	Reopen debug.log upon SIGHUP

	Bash programmable completion for bitcoind(1)

	On supported OS’s, each thread is given a useful name









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required release version.

required_version: 0.11.0




Required title.

title: Bitcoin Core version 0.11.0 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-07-12




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.6.1
optional_date: 2012-05-04
title: Bitcoin-Qt version 0.6.1 released



Bitcoin-Qt version 0.6.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.1/

This is a bug-fix and code-cleanup release, with no major new features.






NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).




CHANGE SUMMARY

Use git shortlog --no-merges v0.6.0.. for a summary of this release.

Source codebase changes:


	Many source code cleanups and warnings fixes.  Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD



JSON-RPC interface changes:


	addmultisigaddress enabled for mainnet (previously only enabled for testnet)



Network protocol changes:


	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)



Backend storage changes:


	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)



Qt user interface:


	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green



Thanks to everybody who contributed to this release:


	Chris Moore

	Dwayne C. Litzenberger

	Gavin Andresen

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Philip Kaufmann

	Pieter Wuille

	R E Broadley

	Timothy Redaelli

	Wladimir J. van der Laan

	cardpuncher

	freewil

	graingert

	sje397







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.3
optional_date: 2013-06-25
title: Bitcoin-Qt version 0.8.3 released



Bitcoin-Qt version 0.8.3 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.3/

This is a maintenance release to fix a denial-of-service attack that
can cause nodes to crash.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.3 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.3 Release notes

Truncate over-size messages to prevent a memory exhaustion attack.

Fix a regression that causes excessive re-writing of the peers.dat file.




0.8.2 Release notes


Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.




Bitcoin-Qt changes


	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations



MacOSX:


	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)



Linux/Unix:


	Copy addresses to middle-mouse-button clipboard






Command-line options


	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.






JSON-RPC API changes


	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address infromation.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.






Networking changes


	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.






Wallet compatibility/rescuing


	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.






Known Bugs


	Entering the getblocktemplate or getwork RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.






Thanks to everybody who contributed to the 0.8.2 and 0.8.3 releases!


	APerson241

	Andrew Poelstra

	Calvin Owens

	Chuck LeDuc Díaz

	Colin Dean

	David Griffith

	David Serrano

	Eric Lombrozo

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Jonas Schnelli

	Larry Gilbert

	Luke Dashjr

	Matt Corallo

	Michael Ford

	Mike Hearn

	Patrick Brown

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	Richard Schwab

	Roman Mindalev

	Scott Howard

	Tariq Bashir

	Warren Togami

	Wladimir J. van der Laan

	freewil

	gladoscc

	kjj2

	mb300sd

	super3









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.4
optional_date: 2013-09-03
title: Bitcoin-Qt version 0.8.4 released



Bitcoin-Qt version 0.8.4 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.4/

This is a maintenance release to fix a critical bug and three
security issues; we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.4 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.4 Release notes


Security issues

An attacker could send a series of messages that resulted in
an integer division-by-zero error in the Bloom Filter handling
code, causing the Bitcoin-Qt or bitcoind process to crash.
Bloom filters were introduced with version 0.8, so versions 0.8.0
through 0.8.3 are vulnerable to this critical denial-of-service attack.

A constant-time algorithm is now used to check RPC password
guess attempts; fixes https://github.com/bitcoin/bitcoin/issues/2838
(CVE-2013-4165)

Implement a better fix for the fill-memory-with-orphan-transactions
attack that was fixed in 0.8.3. See
https://bitslog.wordpress.com/2013/07/18/buggy-cve-2013-4627-patch-open-new-vectors-of-attack/
for a description of the weaknesses of the previous fix.
(CVE-2013-4627)




Bugs fixed

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans.
This bug could cause nodes running with the -debug flag to crash.

OSX: use FD_FULLSYNC with LevelDB, which will (hopefully!)
prevent the database corruption issues many people have
experienced on OSX.

Linux: clicking on bitcoin: links was broken if you were using
a Gnome-based desktop.

Fix a hang-at-shutdown bug that only affects users that compile
their own version of Bitcoin against Boost versions 1.50-1.52.




Other changes

Checkpoint at block 250,000 to speed up initial block downloads
and make the progress indicator when downloading more accurate.




Thanks to everybody who contributed to the 0.8.4 releases!


	Pieter Wuille

	Warren Togami

	Patrick Strateman

	pakt

	Gregory Maxwell

	Sergio Demian Lerner

	grayleonard

	Cory Fields

	Matt Corallo

	Gavin Andresen









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)

required_version: 0.11.2




Required title.

title: Bitcoin Core version 0.11.2 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-11-13




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.3.22
optional_date: 2011-06-05
title: Bitcoin version 0.3.22 released



Download URL: http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.22/

This is largely a bugfix and TX fee schedule release.  We also hope to make 0.3.23 a quick release, to fix problems that the network has seen due to explosive growth in the past week.

Notable changes:


	Client will accept and relay TX’s with 0.0005 BTC fee schedule (users still pay 0.01 BTC per kb, until next version)

	Non-standard transactions accepted on testnet

	Source code tree reorganized (prep for autotools build)

	Remove “Generate Coins” option from GUI, and remove 4way SSE miner.  Internal reference CPU miner remains available, but users are directed to external miners for best hash production.

	IRC is overflowing.  Client now bootstraps to channels #bitcoin00 - #bitcoin99

	DNS names now may be used with -addnode, -connect (requires -dns to enable)



RPC changes:


	listtransactions adds from param, for range queries

	move may take account balances negative

	settxfee added, to manually set TX fee



Recommendations:  If you have trouble connecting to the network, try one or more of these techniques:


	-dnsseed

	-upnp, or forward port 8333 on your router









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.9.0
optional_date: 2014-03-19
title: Bitcoin Core version 0.9.0 released



Bitcoin Core version 0.9.0 is now available from:

https://bitcoin.org/bin/0.9.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), uninstall all
earlier versions of Bitcoin, then run the installer (on Windows) or just copy
over /Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.0 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

On Windows, do not forget to uninstall all earlier versions of the Bitcoin
client first, especially if you are switching to the 64-bit version.




Windows 64-bit installer

New in 0.9.0 is the Windows 64-bit version of the client. There have been
frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync. Because of this it is recommended to install the
64-bit version if your system supports it.

NOTE: Release candidate 2 Windows binaries are not code-signed; use PGP
and the SHA256SUMS.asc file to make sure your binaries are correct.
In the final 0.9.0 release, Windows setup.exe binaries will be code-signed.




OSX 10.5 / 32-bit no longer supported

0.9.0 drops support for older Macs. The minimum requirements are now:


	A 64-bit-capable CPU (see http://support.apple.com/kb/ht3696);

	Mac OS 10.6 or later (see https://support.apple.com/kb/ht1633).






Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9 and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).




Rebranding to Bitcoin Core

To reduce confusion between Bitcoin-the-network and Bitcoin-the-software we
have renamed the reference client to Bitcoin Core.




OP_RETURN and data in the block chain

On OP_RETURN:  There was been some confusion and misunderstanding in
the community, regarding the OP_RETURN feature in 0.9 and data in the
blockchain.  This change is not an endorsement of storing data in the
blockchain.  The OP_RETURN change creates a provably-prunable output,
to avoid data storage schemes – some of which were already deployed –
that were storing arbitrary data such as images as forever-unspendable
TX outputs, bloating bitcoin’s UTXO database.

Storing arbitrary data in the blockchain is still a bad idea; it is less
costly and far more efficient to store non-currency data elsewhere.




Autotools build system

For 0.9.0 we switched to an autotools-based build system instead of individual
(q)makefiles.

Using the standard ”./autogen.sh; ./configure; make” to build Bitcoin-Qt and
bitcoind makes it easier for experienced open source developers to contribute
to the project.

Be sure to check doc/build-*.md for your platform before building from source.




Bitcoin-cli

Another change in the 0.9 release is moving away from the bitcoind executable
functioning both as a server and as a RPC client. The RPC client functionality
(“tell the running bitcoin daemon to do THIS”) was split into a separate
executable, ‘bitcoin-cli’. The RPC client code will eventually be removed from
bitcoind, but will be kept for backwards compatibility for a release or two.




walletpassphrase RPC

The behavior of the walletpassphrase RPC when the wallet is already unlocked
has changed between 0.8 and 0.9.

The 0.8 behavior of walletpassphrase is to fail when the wallet is already unlocked:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
Error: Wallet is already unlocked (old unlock time stays)





The new behavior of walletpassphrase is to set a new unlock time overriding
the old one:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
walletunlocktime = now + 10 (overriding the old unlock time)








Transaction malleability-related fixes

This release contains a few fixes for transaction ID (TXID) malleability
issues:


	-nospendzeroconfchange command-line option, to avoid spending
zero-confirmation change

	IsStandard() transaction rules tightened to prevent relaying and mining of
mutated transactions

	Additional information in listtransactions/gettransaction output to
report wallet transactions that conflict with each other because
they spend the same outputs.

	Bug fixes to the getbalance/listaccounts RPC commands, which would report
incorrect balances for double-spent (or mutated) transactions.

	New option: -zapwallettxes to rebuild the wallet’s transaction information






Transaction Fees

This release drops the default fee required to relay transactions across the
network and for miners to consider the transaction in their blocks to
0.01mBTC per kilobyte.

Note that getting a transaction relayed across the network does NOT guarantee
that the transaction will be accepted by a miner; by default, miners fill
their blocks with 50 kilobytes of high-priority transactions, and then with
700 kilobytes of the highest-fee-per-kilobyte transactions.

The minimum relay/mining fee-per-kilobyte may be changed with the
minrelaytxfee option. Note that previous releases incorrectly used
the mintxfee setting to determine which low-priority transactions should
be considered for inclusion in blocks.

The wallet code still uses a default fee for low-priority transactions of
0.1mBTC per kilobyte. During periods of heavy transaction volume, even this
fee may not be enough to get transactions confirmed quickly; the mintxfee
option may be used to override the default.






0.9.0 Release notes

RPC:


	New notion of ‘conflicted’ transactions, reported as confirmations: -1

	listreceivedbyaddress now provides tx ids

	Add raw transaction hex to gettransaction output

	Updated help and tests for getreceivedby(account|address)

	In getblock, accept 2nd verbose parameter, similar to getrawtransaction,
but defaulting to 1 for backward compatibility

	Add verifychain, to verify chain database at runtime

	Add dumpwallet and importwallet RPCs

	keypoolrefill gains optional size parameter

	Add getbestblockhash, to return tip of best chain

	Add chainwork (the total work done by all blocks since the genesis block)
to getblock output

	Make RPC password resistant to timing attacks

	Clarify help messages and add examples

	Add getrawchangeaddress call for raw transaction change destinations

	Reject insanely high fees by default in sendrawtransaction

	Add RPC call decodescript to decode a hex-encoded transaction script

	Make validateaddress provide redeemScript

	Add getnetworkhashps to get the calculated network hashrate

	New RPC ping command to request ping, new pingtime and pingwait fields
in getpeerinfo output

	Adding new addrlocal field to getpeerinfo output

	Add verbose boolean to getrawmempool

	Add rpc command getunconfirmedbalance to obtain total unconfirmed balance

	Explicitly ensure that wallet is unlocked in importprivkey

	Add check for valid keys in importprivkey



Command-line options:


	New option: -nospendzeroconfchange to never spend unconfirmed change outputs

	New option: -zapwallettxes to rebuild the wallet’s transaction information

	Rename option -tor to -onion to better reflect what it does

	Add -disablewallet mode to let bitcoind run entirely without wallet (when
built with wallet)

	Update default -rpcsslciphers to include TLSv1.2

	make -logtimestamps default on and rework help-message

	RPC client option: -rpcwait, to wait for server start

	Remove -logtodebugger

	Allow -noserver with bitcoind



Block-chain handling and storage:


	Update leveldb to 1.15

	Check for correct genesis (prevent cases where a datadir from the wrong
network is accidentally loaded)

	Allow txindex to be removed and add a reindex dialog

	Log aborted block database rebuilds

	Store orphan blocks in serialized form, to save memory

	Limit the number of orphan blocks in memory to 750

	Fix non-standard disconnected transactions causing mempool orphans

	Add a new checkpoint at block 279,000



Wallet:


	Bug fixes and new regression tests to correctly compute
the balance of wallets containing double-spent (or mutated) transactions

	Store key creation time. Calculate whole-wallet birthday.

	Optimize rescan to skip blocks prior to birthday

	Let user select wallet file with -wallet=foo.dat

	Consider generated coins mature at 101 instead of 120 blocks

	Improve wallet load time

	Don’t count txins for priority to encourage sweeping

	Don’t create empty transactions when reading a corrupted wallet

	Fix rescan to start from beginning after importprivkey

	Only create signatures with low S values



Mining:


	Increase default -blockmaxsize/prioritysize to 750K/50K

	getblocktemplate does not require a key to create a block template

	Mining code fee policy now matches relay fee policy



Protocol and network:


	Drop the fee required to relay a transaction to 0.01mBTC per kilobyte

	Send tx relay flag with version

	New reject P2P message (BIP 0061, see
https://gist.github.com/gavinandresen/7079034 for draft)

	Dump addresses every 15 minutes instead of 10 seconds

	Relay OP_RETURN data TxOut as standard transaction type

	Remove CENT-output free transaction rule when relaying

	Lower maximum size for free transaction creation

	Send multiple inv messages if mempool.size > MAX_INV_SZ

	Split MIN_PROTO_VERSION into INIT_PROTO_VERSION and MIN_PEER_PROTO_VERSION

	Do not treat fFromMe transaction differently when broadcasting

	Process received messages one at a time without sleeping between messages

	Improve logging of failed connections

	Bump protocol version to 70002

	Add some additional logging to give extra network insight

	Added new DNS seed from bitcoinstats.com



Validation:


	Log reason for non-standard transaction rejection

	Prune provably-unspendable outputs, and adapt consistency check for it.

	Detect any sufficiently long fork and add a warning

	Call the -alertnotify script when we see a long or invalid fork

	Fix multi-block reorg transaction resurrection

	Reject non-canonically-encoded serialization sizes

	Reject dust amounts during validation

	Accept nLockTime transactions that finalize in the next block



Build system:


	Switch to autotools-based build system

	Build without wallet by passing --disable-wallet to configure, this
removes the BerkeleyDB dependency

	Upgrade gitian dependencies (libpng, libz, libupnpc, boost, openssl) to more
recent versions

	Windows 64-bit build support

	Solaris compatibility fixes

	Check integrity of gitian input source tarballs

	Enable full GCC Stack-smashing protection for all OSes



GUI:


	Switch to Qt 5.2.0 for Windows build

	Add payment request (BIP 0070) support

	Improve options dialog

	Show transaction fee in new send confirmation dialog

	Add total balance in overview page

	Allow user to choose data directory on first start, when data directory is
missing, or when the -choosedatadir option is passed

	Save and restore window positions

	Add vout index to transaction id in transactions details dialog

	Add network traffic graph in debug window

	Add open URI dialog

	Add Coin Control Features

	Improve receive coins workflow: make the ‘Receive’ tab into a form to request
payments, and move historical address list functionality to File menu.

	Rebrand to Bitcoin Core

	Move initialization/shutdown to a thread. This prevents “Not responding”
messages during startup. Also show a window during shutdown.

	Don’t regenerate autostart link on every client startup

	Show and store message of normal bitcoin:URI

	Fix richtext detection hang issue on very old Qt versions

	OS X: Make use of the 10.8+ user notification center to display Growl-like
notifications

	OS X: Added NSHighResolutionCapable flag to Info.plist for better font
rendering on Retina displays.

	OS X: Fix bitcoin-qt startup crash when clicking dock icon

	Linux: Fix Gnome bitcoin: URI handler



Miscellaneous:


	Add Linux script (contrib/qos/tc.sh) to limit outgoing bandwidth

	Add -regtest mode, similar to testnet but private with instant block
generation with setgenerate RPC.

	Add linearize.py script to contrib, for creating bootstrap.dat

	Add separate bitcoin-cli client




Credits

Thanks to everyone who contributed to this release:


	Andrey

	Ashley Holman

	b6393ce9-d324-4fe1-996b-acf82dbc3d53

	bitsofproof

	Brandon Dahler

	Calvin Tam

	Christian Decker

	Christian von Roques

	Christopher Latham

	Chuck

	coblee

	constantined

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Larimer

	David Hill

	Dmitry Smirnov

	Drak

	Eric Lombrozo

	fanquake

	fcicq

	Florin

	frewil

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Guillermo Céspedes Tabárez

	Haakon Nilsen

	HaltingState

	Han Lin Yap

	harry

	Ian Kelling

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Josh Lehan

	Josh Triplett

	Julian Langschaedel

	Kangmo

	Lake Denman

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Michael Bauer

	Michael Ford

	Michagogo

	Midnight Magic

	Mike Hearn

	Nils Schneider

	Noel Tiernan

	Olivier Langlois

	patrick s

	Patrick Strateman

	paveljanik

	Peter Todd

	phantomcircuit

	phelixbtc

	Philip Kaufmann

	Pieter Wuille

	Rav3nPL

	R E Broadley

	regergregregerrge

	Robert Backhaus

	Roman Mindalev

	Rune K. Svendsen

	Ryan Niebur

	Scott Ellis

	Scott Willeke

	Sergey Kazenyuk

	Shawn Wilkinson

	Sined

	sje

	Subo1978

	super3

	Tamas Blummer

	theuni

	Thomas Holenstein

	Timon Rapp

	Timothy Stranex

	Tom Geller

	Torstein Husebø

	Vaclav Vobornik

	vhf / victor felder

	Vinnie Falco

	Warren Togami

	Wil Bown

	Wladimir J. van der Laan









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.3.24
optional_date: 2011-07-08
title: Bitcoin version 0.3.24 released



Full announcement (including signatures) [http://sourceforge.net/mailarchive/message.php?msg_id=27771039]

Bitcoin v0.3.24 is now available for download at
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.24/

This is another bug fix release.  We had hoped to have wallet encryption ready for release, but more urgent fixes for existing clients were needed – most notably block download problems were getting severe.  Wallet encryption is ready for testing at https://github.com/bitcoin/bitcoin/pull/352 for the git-savvy, and hopefully will follow shortly in the next release, v0.4.

Notable fixes in v0.3.24, and the main reasons for this release:


	Block downloads were failing or taking unreasonable amounts of time to complete, because the increased size of the block chain was bumping up against some earlier buffer-size DoS limits.

	Fix crash caused by loss/lack of network connection.



Notable changes in v0.3.24:


	DNS seeding enabled by default.

	UPNP enabled by default in the GUI client.  The percentage of bitcoin clients that accept incoming connections is quite small, and that is a problem.  This should help.  bitcoind, and unofficial builds, are unchanged (though we encourage use of “-upnp” to help the network!).

	Initial unit testing framework.  Bitcoin sorely needs automated tests, and this is a beginning.  Contributions welcome.

	Internal wallet code cleanup.  While invisible to an end user, this change provides the basis for v0.4’s wallet encryption.









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)

required_version: 0.12.1




Required title.

title: Bitcoin Core version 0.12.1 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2016-04-15




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.6.2
optional_date: 2012-05-08
title: Bitcoin-Qt version 0.6.2 released



Bitcoin-Qt version 0.6.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.2/

This is a bug-fix and code-cleanup release, with no major new features.






NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Fixed https://github.com/bitcoin/bitcoin/issues/1065, a bug that
could cause long-running nodes to crash.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).




CHANGE SUMMARY

Use git shortlog --no-merges v0.6.0.. for a summary of this release.

Source codebase changes:


	Many source code cleanups and warnings fixes.  Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD



JSON-RPC interface changes:


	addmultisigaddress enabled for mainnet (previously only enabled for testnet)



Network protocol changes:


	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)



Backend storage changes:


	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)



Qt user interface:


	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green



Thanks to everybody who contributed to this release:


	Chris Moore

	Dwayne C. Litzenberger

	Gavin Andresen

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Philip Kaufmann

	Pieter Wuille

	R E Broadley

	Timothy Redaelli

	Wladimir J. van der Laan

	cardpuncher

	freewil

	graingert

	sje397







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.0
optional_date: 2013-02-19
title: Bitcoin-Qt version 0.8.0 released



Bitcoin-Qt version 0.8.0 are now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.0/

This is a major release designed to improve performance and handle the
increasing volume of transactions on the network.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

The first time you run after the upgrade a re-indexing process will be
started that will take anywhere from 30 minutes to several hours,
depending on the speed of your machine.




Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).




Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices.  LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.




New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).




New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.




New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.




Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.




Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)




Thanks to everybody who contributed to this release:


	Alexander Kjeldaas

	Andrey Alekseenko

	Arnav Singh

	Christian von Roques

	Eric Lombrozo

	Forrest Voight

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Mike Cassano

	Mike Hearn

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	Richard Schwab

	Robert Backhaus

	Rune K. Svendsen

	Sergio Demian Lerner

	Wladimir J. van der Laan

	burger2

	default

	fanquake

	grimd34th

	justmoon

	redshark1802

	tucenaber

	xanatos









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.7.2
optional_date: 2012-12-14
title: Bitcoin-Qt version 0.7.2 released



Bitcoin-Qt version 0.7.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.2

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.




Bug fixes


	Prevent RPC move from deadlocking. This was caused by trying to lock the
database twice.

	Fix use-after-free problems in initialization and shutdown, the latter of
which caused Bitcoin-Qt to crash on Windows when exiting.

	Correct library linking so building on Windows natively works.

	Avoid a race condition and out-of-bounds read in block creation/mining code.

	Improve platform compatibility quirks, including fix for 100% CPU utilization
on FreeBSD 9.

	A few minor corrections to error handling, and updated translations.

	OSX 10.5 supported again





Thanks to everybody who contributed to this release:


	Alex

	dansmith

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Philip Kaufmann

	Pieter Wuille

	Wladimir J. van der Laan

	grimd34th









          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Please see _releases/0.10.0.md for a release template

required_version: 0.8.5
optional_date: 2013-09-13
title: Bitcoin-Qt version 0.8.5 released



Bitcoin-Qt version 0.8.5 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.5/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues




How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.5 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.






0.8.5 Release notes


Bugs fixed

Transactions with version numbers larger than 0x7fffffff were
incorrectly being relayed and included in blocks.

Blocks containing transactions with version numbers larger
than 0x7fffffff caused the code that checks for LevelDB database
inconsistencies at startup to erroneously report database
corruption and suggest that you reindex your database.

This release also contains a non-critical fix to the code that
enforces BIP 34 (block height in the coinbase transaction).

–

Thanks to Gregory Maxwell and Pieter Wuille for quickly
identifying and fixing the transaction version number bug.







          

      

      

    

  

  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.




Text originally from Bitcoin Core project




Metadata and small formatting changes from Bitcoin.org project


Required release version.

required_version: 0.10.2




Required title.

title: Bitcoin Core version 0.10.2 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-05-19




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.


Required value below populates the %v variable (note: % needs to be escaped in YAML if it starts a value)

required_version: 0.10.3




Required title.

title: Bitcoin Core version 0.10.3 released




Optional release date.  May be filled in hours/days after a release

optional_date: 2015-10-14




Optional magnet link.  To get it, open the torrent in a good BitTorrent client




and View Details, or install the transmission-cli Debian/Ubuntu package




and run: transmission-show -m 
  
    
    
    This file is licensed under the MIT License (MIT) available on
    
    

    
 
  
  

    
      
          
            
  


This file is licensed under the MIT License (MIT) available on




http://opensource.org/licenses/MIT.

layout: base-core
lang: de
id: bitcoin-core-2016-01-07-statement
columns: 1
title: Stellungnahme der Bitcoin Core Entwickler – 2016-01-07
breadcrumbs:


	bitcoin

	bcc

	2016-01-07 Statement




moved_url: https://bitcoincore.org/de/2016/01/07/stellungnahme-der-bitcoin-core-entwickler/






Stellungnahme der Bitcoin Core Entwickler 2016-01-07

Bitcoin ist eine peer-to-peer Version von digitalem Geld, welche ermöglicht Zahlungen auf dem direkten Weg zwischen zwei Teilnehmern zu veranlassen, ohne dabei durch einen zentralen Finanzdienstleister verarbeitet zu werden. Unsere Vorstellung von Bitcoin ist es auch bei extremer Auslastung effizient zu arbeiten, aber dennoch Sicherheit und die grundlegenden  Eigenschaften der Dezentralisierung, welche Bitcoin einzigartig machen, zu erhalten.

Wir glauben dass Bitcoin dies erreichen kann, indem die Fundamente für weitere Schichten über dem Protokoll und Schnittstellen angeboten werden. Weiterhin ist unser Ziel die Privatsphäre der Bitcoin-Nutzer zu verteidigen und zu verbessern.

“Bitcoin Core” ist der Name des Open Source Software Projekts welches der direkte Nachfolger der originalen Bitcoin-Implementierung ist. Als Teilnehmer des Projekts entwickeln und veröffentlichen wir Software für die Bitcoin Community. Wir streben an das Konsensus-Protokoll von Bitcoin zu verbessern indem wir Upgrades vorschlagen die in unseren Augen sowohl technisch und im Hinblick auf die Ziele von Bitcoin Sinn machen, als auch vernüftige Wahrscheinlichkeit haben umfassende Unterstützung und Annahme zu erhalten.

Änderungen and den Bitcoin Konsensus-Regeln können entweder durch einen “soft fork” oder “hard fork” gemacht werden (siehe Anhang A). Soft forks erlauben Änderungen ohne Kompatibiliät zu brechen. Alte und neue Versionen der Software können im Netzwerk koexistieren. Soft forks können neue Funktionen einführen ohne Unterbrechung zu verursachen, weil Benutzer der neuen Funktion ein Upgrade durchführen können, während Nutzer, welche die neue Funktion nicht benötigen, keine Aktion durchführen müssen.

Hard forks verursachen Inkompatibilität zu allen frühreren Bitcoin-Softwareversionen und verlangen daher von jedem Teilnehmer ein Upgrade auf die neuen Konsensus-Regeln bis zu einer festgelegten Frist, um finanzielle Verluste zu vermeiden. Hard forks können auch die Nutzen aus Netzwerkeffekten stark dämmen, da einerseits Teilnehmer, die nicht auf den hard fork reagieren, andererseits auch Drittsoftware und Anwendungen vom Netzwerk abgestoßen werden.

Aus diesen Gründen bevorzugt Bitcoin Core Kompatibilität und glaubt dass jeder Nutzer selbst entscheiden kann wann und ob er seine Bitcoin-Software aktualisiert. Es stellte sich heraus, dass es möglich ist nahezu beliebige Funktionen mit einem soft fork hinzuzufügen. Gelegentlich können hard forks Vorteile haben und wenn nahezu universale Übereinstimmung herrscht, könnten diese Vorteile die Nachteile überwiegen. Abgesehen von diesen seltenen Fällen, sollten soft forks vorgezogen werden. Wir glauben, dass dies im besten Interesse der jetzigen und zukünftigen Nutzer des Systems ist.

Wir glauben auch, dass die Anzahl der Implementierungen des Bitcoin-Protokolls mit dem Wachstum des Bitcoin-Netzwerks zunimmt. Auch ist es unvermeidbar dass andere Softwareprojekte radikal abweichende Vorschläge veröffentlichen. Letztendlich entscheidet nicht das Bitcoin Core Entwicklerteam über die Bitcoin Konsensus-Regeln, sondern die Nutzer, die ihre eigenen Entscheidungen treffen welche Bitcoin-Software sie benutzen. Aus diesem Grund hat die Bitcoin Implementierung des Bitcoin Core Entwicklerteams absichtlich keine auto-update Funktion. Der Verzicht sichert ab, dass jedes Upgrade aufgrund der Freiwilligkeit des Benutzers geschieht und dem Nutzer die Wahl über die Software gelassen wird.


Anhang A

Ein hard fork ist eine Änderung der Konsensus-Regeln, sodass Blöcke die unter alten Regeln ungültig sind unter neuen Regeln gültig werden könnten.

Ein soft fork ist eine Änderung der Konsensus-Regeln, sodass Blöcke die unter alten Regeln gültig sind, unter den neuen Regeln ungültig werden könnten. Jedoch bleiben alle Blöcke, die unter alten Regeln ungültig sind auch unter den neuen Regeln ungültig.







          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}

{% comment %}{% endcomment %}
[bitcoin URI]: /en/developer-guide#term-bitcoin-uri “A URI which allows receivers to encode payment details so spenders don’t have to manually enter addresses and other details”
[certificate chain]: /en/developer-examples#term-certificate-chain “A chain of certificates connecting a individual’s leaf certificate to the certificate authority’s root certificate”
[coinbase block height]: /en/developer-reference#term-coinbase-block-height “The current block’s height encoded into the first bytes of the coinbase field”
[data-pushing opcode]: https://en.bitcoin.it/wiki/Script#Constants “Any opcode from 0x01 to 0x4e which pushes data on to the script evaluation stack”
[fiat]: /en/developer-guide#term-fiat “National currencies such as the dollar or euro”
[intermediate certificate]: /en/developer-examples#term-intermediate-certificate “A intermediate certificate authority certificate which helps connect a leaf (receiver) certificate to a root certificate authority”
[key index]: /en/developer-guide#term-key-index “An index number used in the HD wallet formula to generate child keys from a parent key”
[key pair]: /en/developer-guide#term-key-pair “A private key and its derived public key”
[label]: /en/developer-guide#term-label “The label parameter of a bitcoin: URI which provides the spender with the receiver’s name (unauthenticated)”
[leaf certificate]: /en/developer-examples#term-leaf-certificate “The end-node in a certificate chain; in the payment protocol, it is the certificate belonging to the receiver of satoshis”
[merge]: /en/developer-guide#term-merge “Spending, in the same transaction, multiple outputs which can be traced back to different previous spenders, leaking information about how many satoshis you control”
[merge avoidance]: /en/developer-guide#term-merge-avoidance “A strategy for selecting which outputs to spend that avoids merging outputs with different histories that could leak private information”
[message]: /en/developer-guide#term-message “A parameter of bitcoin: URIs which allows the receiver to optionally specify a message to the spender”
[msg_tx]: /en/developer-reference#term-msg_tx “The TXID data type identifier of an inventory on the P2P network”
[msg_block]: /en/developer-reference#term-msg_block “The block header hash data type identifier of an inventory on the P2P network”
[msg_filtered_block]: /en/developer-reference#term-msg_block “An alternative to the block header hash data type identifier of an inventory on the P2P network used to request a merkle block”
[network]: /en/developer-guide#term-network “The Bitcoin P2P network which broadcasts transactions and blocks”
[op_checkmultisig]: /en/developer-reference#term-op-checkmultisig “Opcode which returns true if one or more provided signatures (m) sign the correct parts of a transaction and match one or more provided public keys (n)”
[op_checksig]: /en/developer-reference#term-op-checksig “Opcode which returns true if a signature signs the correct parts of a transaction and matches a provided public key”
[op_dup]: /en/developer-reference#term-op-dup “Operation which duplicates the entry below it on the stack”
[op_equal]: /en/developer-reference#term-op-equal “Operation which returns true if the two entries below it on the stack are equivalent”
[op_equalverify]: /en/developer-reference#term-op-equalverify “Operation which terminates the script in failure unless the two entries below it on the stack are equivalent”
[op_hash160]: /en/developer-reference#term-op-hash160 “Operation which converts the entry below it on the stack into a RIPEMD(SHA256()) hashed version of itself”
[op_return]: /en/developer-reference#term-op-return “Operation which terminates the script in failure”
[op_verify]: /en/developer-reference#term-op-verify “Operation which terminates the script if the entry below it on the stack is non-true (zero)”
[output index]: /en/developer-guide#term-output-index “The sequentially-numbered index of outputs in a single transaction starting from 0”
[PaymentDetails]: /en/developer-examples#term-paymentdetails “The PaymentDetails of the payment protocol which allows the receiver to specify the payment details to the spender”
[PaymentRequest]: /en/developer-examples#term-paymentrequest “The PaymentRequest of the payment protocol which contains and allows signing of the PaymentDetails”
[PaymentRequests]: /en/developer-examples#term-paymentrequest “The PaymentRequest of the payment protocol which contains and allows signing of the PaymentDetails”
[peer]: /en/developer-guide#term-peer “Peer on the P2P network who receives and broadcasts transactions and blocks”
[peers]: /en/developer-guide#term-peer “Peers on the P2P network who receive and broadcast transactions and blocks”
[PKI]: /en/developer-examples#term-pki “Public Key Infrastructure; usually meant to indicate the X.509 certificate system used for HTTP Secure (https).”
[point function]: /en/developer-guide#term-point-function “The ECDSA function used to create a public key from a private key”
[pp amount]: /en/developer-examples#term-pp-amount “Part of the Output part of the PaymentDetails part of a payment protocol where receivers can specify the amount of satoshis they want paid to a particular pubkey script”
[pp expires]: /en/developer-examples#term-pp-expires “The expires field of a PaymentDetails where the receiver tells the spender when the PaymentDetails expires”
[pp memo]: /en/developer-examples#term-pp-memo “The memo fields of PaymentDetails, Payment, and PaymentACK which allow spenders and receivers to send each other memos”
[pp merchant data]: /en/developer-examples#term-pp-merchant-data “The merchant_data part of PaymentDetails and Payment which allows the receiver to send arbitrary data to the spender in PaymentDetails and receive it back in Payments”
[pp PKI data]: /en/developer-examples#term-pp-pki-data “The pki_data field of a PaymentRequest which provides details such as certificates necessary to validate the request”
[pp pki type]: /en/developer-examples#term-pp-pki-type “The PKI field of a PaymentRequest which tells spenders how to validate this request as being from a specific recipient”
[pp script]: /en/developer-examples#term-pp-script “The script field of a PaymentDetails where the receiver tells the spender what pubkey scripts to pay”
[previous block header hash]: /en/developer-reference#term-previous-block-header-hash “A field in the block header which contains the SHA256(SHA256()) hash of the previous block’s header”
[proper money handling]: /en/developer-reference#term-proper-money-handling “Bitcoin amounts need to be correctly processed without introducing rounding errors that could cause monetary loss”
[r]: /en/developer-guide#term-r-parameter “The payment request parameter in a bitcoin: URI”
[receipt]: /en/developer-guide#term-receipt “A cryptographically-verifiable receipt created using parts of a payment request and a confirmed transaction”
[recurrent rebilling]: /en/developer-guide#rebilling-recurring-payments “Billing a spender on a regular schedule”
[refund]: /en/developer-guide#issuing-refunds “A transaction which refunds some or all satoshis received in a previous transaction”
[root certificate]: /en/developer-examples#term-root-certificate “A certificate belonging to a certificate authority (CA)”
[ssl signature]: /en/developer-examples#term-ssl-signature “Signatures created and recognized by major SSL implementations such as OpenSSL”
[standard block relay]: /en/developer-guide#term-standard-block-relay “The regular block relay method: announcing a block with an inv message and waiting for a response”
[transaction]: /en/developer-guide#transactions “A transaction spending satoshis”
[transaction version number]: /en/developer-guide#term-transaction-version-number “A version number prefixed to transactions to allow upgrading”“
[transactions]: /en/developer-guide#transactions “A transaction spending satoshis”
[unencrypted wallet]: /en/developer-reference#encryptwallet “A wallet that has not been encrypted with the encryptwallet RPC”
[unique addresses]: /en/developer-guide#term-unique-address “Address which are only used once to protect privacy and increase security”
[unlocked wallet]: /en/developer-reference#walletpassphrase “An encrypted wallet that has been unlocked with the walletpassphrase RPC”
[unsolicited block push]: /en/developer-guide#term-unsolicited-block-push “When a miner sends a block message without sending an inv message first”
[URI QR Code]: /en/developer-guide#term-uri-qr-code “A QR code containing a bitcoin: URI”
[v2 block]: /en/developer-reference#term-v2-block “The current version of Bitcoin blocks”
[verified payments]: /en/developer-guide#verifying-payment “Payments which the receiver believes won’t be double spent”
[wallet support]: /en/developer-reference#term-wallet-support “A Bitcoin Core ./configure option that enables (default) or disables the wallet”

{% comment %}{% endcomment %}
[rpc addmultisigaddress]: /en/developer-reference#addmultisigaddress
[rpc addnode]: /en/developer-reference#addnode
[rpc backupwallet]: /en/developer-reference#backupwallet
[rpc createmultisig]: /en/developer-reference#createmultisig
[rpc createrawtransaction]: /en/developer-reference#createrawtransaction
[rpc decoderawtransaction]: /en/developer-reference#decoderawtransaction
[rpc decodescript]: /en/developer-reference#decodescript
[rpc dumpprivkey]: /en/developer-reference#dumpprivkey
[rpc dumpwallet]: /en/developer-reference#dumpwallet
[rpc encryptwallet]: /en/developer-reference#encryptwallet
[rpc estimatefee]: /en/developer-reference#estimatefee
[rpc estimatepriority]: /en/developer-reference#estimatepriority
[rpc generate]: /en/developer-reference#generate
[rpc getaccount]: /en/developer-reference#getaccount
[rpc getaccountaddress]: /en/developer-reference#getaccountaddress
[rpc getaddednodeinfo]: /en/developer-reference#getaddednodeinfo
[rpc getaddressesbyaccount]: /en/developer-reference#getaddressesbyaccount
[rpc getbalance]: /en/developer-reference#getbalance
[rpc getbestblockhash]: /en/developer-reference#getbestblockhash
[rpc getblock]: /en/developer-reference#getblock
[rpc getblockchaininfo]: /en/developer-reference#getblockchaininfo
[rpc getblockcount]: /en/developer-reference#getblockcount
[rpc getblockhash]: /en/developer-reference#getblockhash
[rpc getblocktemplate]: /en/developer-reference#getblocktemplate
[rpc getchaintips]: /en/developer-reference#getchaintips
[rpc getconnectioncount]: /en/developer-reference#getconnectioncount
[rpc getdifficulty]: /en/developer-reference#getdifficulty
[rpc getgenerate]: /en/developer-reference#getgenerate
[rpc gethashespersec]: /en/developer-reference#gethashespersec
[rpc getinfo]: /en/developer-reference#getinfo
[rpc getmempoolinfo]: /en/developer-reference#getmempoolinfo
[rpc getmininginfo]: /en/developer-reference#getmininginfo
[rpc getnettotals]: /en/developer-reference#getnettotals
[rpc getnetworkhashps]: /en/developer-reference#getnetworkhashps
[rpc getnetworkinfo]: /en/developer-reference#getnetworkinfo
[rpc getnewaddress]: /en/developer-reference#getnewaddress
[rpc getpeerinfo]: /en/developer-reference#getpeerinfo
[rpc getrawchangeaddress]: /en/developer-reference#getrawchangeaddress
[rpc getrawmempool]: /en/developer-reference#getrawmempool
[rpc getrawtransaction]: /en/developer-reference#getrawtransaction
[rpc getreceivedbyaccount]: /en/developer-reference#getreceivedbyaccount
[rpc getreceivedbyaddress]: /en/developer-reference#getreceivedbyaddress
[rpc gettransaction]: /en/developer-reference#gettransaction
[rpc gettxout]: /en/developer-reference#gettxout
[rpc gettxoutproof]: /en/developer-reference#gettxoutproof
[rpc gettxoutsetinfo]: /en/developer-reference#gettxoutsetinfo
[rpc getunconfirmedbalance]: /en/developer-reference#getunconfirmedbalance
[rpc getwalletinfo]: /en/developer-reference#getwalletinfo
[rpc getwork]: /en/developer-reference#getwork
[rpc help]: /en/developer-reference#help
[rpc importaddress]: /en/developer-reference#importaddress
[rpc importprivkey]: /en/developer-reference#importprivkey
[rpc importwallet]: /en/developer-reference#importwallet
[rpc keypoolrefill]: /en/developer-reference#keypoolrefill
[rpc listaccounts]: /en/developer-reference#listaccounts
[rpc listaddressgroupings]: /en/developer-reference#listaddressgroupings
[rpc listlockunspent]: /en/developer-reference#listlockunspent
[rpc listreceivedbyaccount]: /en/developer-reference#listreceivedbyaccount
[rpc listreceivedbyaddress]: /en/developer-reference#listreceivedbyaddress
[rpc listsinceblock]: /en/developer-reference#listsinceblock
[rpc listtransactions]: /en/developer-reference#listtransactions
[rpc listunspent]: /en/developer-reference#listunspent
[rpc lockunspent]: /en/developer-reference#lockunspent
[rpc move]: /en/developer-reference#move
[rpc ping]: /en/developer-reference#ping-rpc
[rpc prioritisetransaction]: /en/developer-reference#prioritisetransaction
[rpc sendfrom]: /en/developer-reference#sendfrom
[rpc sendmany]: /en/developer-reference#sendmany
[rpc sendrawtransaction]: /en/developer-reference#sendrawtransaction
[rpc sendtoaddress]: /en/developer-reference#sendtoaddress
[rpc setaccount]: /en/developer-reference#setaccount
[rpc setgenerate]: /en/developer-reference#setgenerate
[rpc settxfee]: /en/developer-reference#settxfee
[rpc signmessage]: /en/developer-reference#signmessage
[rpc signrawtransaction]: /en/developer-reference#signrawtransaction
[rpc stop]: /en/developer-reference#stop
[rpc submitblock]: /en/developer-reference#submitblock
[rpc validateaddress]: /en/developer-reference#validateaddress
[rpc verifychain]: /en/developer-reference#verifychain
[rpc verifymessage]: /en/developer-reference#verifymessage
[rpc verifytxoutproof]: /en/developer-reference#verifytxoutproof
[rpc walletlock]: /en/developer-reference#walletlock
[rpc walletpassphrase]: /en/developer-reference#walletpassphrase
[rpc walletpassphrasechange]: /en/developer-reference#walletpassphrasechange

{% comment %}{% endcomment %}
[rest get block]: /en/developer-reference#get-block
[rest get block-notxdetails]: /en/developer-reference#get-blocknotxdetails
[rest get tx]: /en/developer-reference#get-tx

{% comment %}{% endcomment %}
[addr message]: /en/developer-reference#addr “The P2P network message which relays IP addresses and port numbers of active nodes to other nodes and clients, allowing decentralized peer discovery.”
[alert message]: /en/developer-reference#alert “The P2P network message which sends alerts in case of major software problems.”
[block message]: /en/developer-reference#block “The P2P network message which sends a serialized block”
[filteradd message]: /en/developer-reference#filteradd “A P2P protocol message used to add a data element to an existing bloom filter.”
[filterclear message]: /en/developer-reference#filterclear “A P2P protocol message used to remove an existing bloom filter.”
[filterload message]: /en/developer-reference#filterclear “A P2P protocol message used to send a filter to a remote peer, requesting that they only send transactions which match the filter.”
[getaddr message]: /en/developer-reference#getaddr “A P2P protool message used to request an addr message containing connection information for other nodes”
[getblocks message]: /en/developer-reference#getblocks “A P2P protocol message used to request an inv message containing a range of block header hashes”
[getdata message]: /en/developer-reference#getdata “A P2P protocol message used to request one or more transactions, blocks, or merkle blocks”
[getheaders message]: /en/developer-reference#getheaders “A P2P protocol message used to request a range of block headers”
[headers message]: /en/developer-reference#headers “A P2P protocol message containing one or more block headers”
[inv message]: /en/developer-reference#inv “A P2P protocol message used to send inventories of transactions and blocks known to the transmitting peer”
[mempool message]: /en/developer-reference#mempool “A P2P protocol message used to request one or more inv messages with currently-unconfirmed transactions”
[merkleblock message]: /en/developer-reference#merkleblock “A P2P protocol message used to request a filtered block useful for SPV proofs”
[notfound message]: /en/developer-reference#notfound “A P2P protocol message sent to indicate that the requested data was not available”
[ping message]: /en/developer-reference#ping “A P2P network message used to see if the remote host is still connected”
[pong message]: /en/developer-reference#pong “A P2P network message used to reply to a P2P network ping message”
[reject message]: /en/developer-reference#reject “A P2P network message used to indicate a previously-received message was rejected for some reason”
[sendheaders message]: /en/developer-reference#sendheaders “A P2P network message used to request new blocks be announced through headers messages rather than inv messages”
[tx message]: /en/developer-reference#tx “A P2P protocol message which sends a single serialized transaction”
[verack message]: /en/developer-reference#verack “A P2P network message sent in reply to a version message to confirm a connection has been established”
[version message]: /en/developer-reference#version “A P2P network message sent at the begining of a connection to allow protocol version negotiation”

{% comment %}{% endcomment %}
[bandwidth sharing guide]: /en/full-node
[bcc contribute]: /en/bitcoin-core/contribute/
[bcc contribute code]: /{{page.lang}}/{% translate development url %}
[bcc contribute documentation]: /en/bitcoin-core/contribute/documentation
[bcc contribute issues]: /en/bitcoin-core/contribute/issues
[bcc contribute support]: /en/bitcoin-core/contribute/support
[bcc contribute translations]: /en/bitcoin-core/contribute/translations
[bcc decentralized peer discovery]: /en/bitcoin-core/features/privacy#decentralized-peer-discovery
[bcc documentation]: /en/bitcoin-core/help#documentation
[bcc download]: /en/download
[bcc features]: /en/bitcoin-core/features/
[bcc forums]: /en/bitcoin-core/help#forums
[bcc help]: /en/bitcoin-core/help
[bcc live help]: /en/bitcoin-core/help#live
[bcc main]: /en/bitcoin-core/
[bcc network support]: /en/bitcoin-core/features/network-support
[bcc privacy]: /en/bitcoin-core/features/privacy
[bcc privacy data leaking]: /en/bitcoin-core/features/privacy#perfect-privacy-for-received-transactions
[bcc requirements]: /en/bitcoin-core/features/requirements
[bcc user interface]: /en/bitcoin-core/features/user-interface
[bcc user interface lightweight]: /en/bitcoin-core/features/user-interface#lightweight
[bcc validation]: /en/bitcoin-core/features/validation
[bcc validation decentralization]: /en/bitcoin-core/features/validation#help-protect-decentralization
[bcc validation do you validate]: /en/bitcoin-core/features/validation#do-you-validate
[bcc validation protection]: /en/bitcoin-core/features/validation#how-validation-protects-your-bitcoins
[bcc version history]: /en/version-history

{% comment %}{% endcomment %}
[Bitcoin Core 0.10.0]: https://github.com/bitcoin/bitcoin/tree/0.10
[bitcoin URI subsection]: /en/developer-guide#bitcoin-uri
[bitcoind initial setup]: /en/developer-examples
[bitcoinpdf]: https://bitcoin.org/en/bitcoin-paper
[choose your wallet]: /en/choose-your-wallet
[communities]: /en/community
[core executable]: /en/download
[dev communities]: /en/development#devcommunities
[developer documentation]: /en/developer-documentation
[devex complex raw transaction]: /en/developer-examples#complex-raw-transaction
[devex payment protocol]: /en/developer-examples#payment-protocol
[devexamples]: /en/developer-examples
[devguide]: /en/developer-guide
[devguide avoiding key reuse]: /en/developer-guide#avoiding-key-reuse
[devguide hardened keys]: /en/developer-guide#hardened-keys
[devguide payment processing]: /en/developer-guide#payment-processing
[devguide wallets]: /en/developer-guide#wallets
[devref]: /en/developer-reference
[devref wallets]: /en/developer-reference#wallets
[locktime parsing rules]: /en/developer-guide#locktime_parsing_rules
[Merge Avoidance subsection]: /en/developer-guide#merge-avoidance
[micropayment channel]: /en/developer-guide#term-micropayment-channel
[not a specification]: /en/developer-reference#not-a-specification
[raw transaction format]: /en/developer-reference#raw-transaction-format
[REST]: /en/developer-reference#http-rest
[RPC]: /en/developer-reference#remote-procedure-calls-rpcs
[RPCs]: /en/developer-reference#remote-procedure-calls-rpcs
[section block chain]: /en/developer-guide#block-chain
[section block header]: /en/developer-reference#block-headers
[section block versions]: /en/developer-reference#block-versions
[section creating a bloom filter]: /en/developer-examples#creating-a-bloom-filter
[section compactSize unsigned integer]: /en/developer-reference#compactsize-unsigned-integers
[section detecting forks]: /en/developer-guide#detecting-forks
[section getblocktemplate]: /en/developer-guide#getblocktemplate-rpc
[section hash byte order]: /en/developer-reference#hash-byte-order
[section merkle trees]: /en/developer-reference#merkle-trees
[section merkleblock example]: /en/developer-examples#parsing-a-merkleblock
[section message header]: /en/developer-reference#message-headers
[section p2p reference]: /en/developer-reference#p2p-network
[section protocol versions]: /en/developer-reference#protocol-versions
[section rpc quick reference]: /en/developer-reference#rpc-quick-reference
[section serialized blocks]: /en/developer-reference#serialized-blocks
[section simple raw transaction]: /en/developer-examples#simple-raw-transaction
[section verifying payment]: /en/developer-guide#verifying-payment
[secure your wallet]: /en/secure-your-wallet
[signature script modification warning]: /en/developer-reference#signature_script_modification_warning
[v0.8 chain fork]: /en/alert/2013-03-11-chain-fork
[Verification subsection]: /en/developer-guide#verifying-payment
[X509Certificates]: /en/developer-examples#term-x509certificates

{% comment %}{% endcomment %}
[BIP14]: https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki
[BIP16]: https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
[BIP21]: https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
[BIP22]: https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki
[BIP23]: https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki
[BIP30]: https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
[BIP31]: https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki
[BIP32]: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
[BIP34]: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
[BIP35]: https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki
[BIP37]: https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
[BIP39]: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
[BIP50]: https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
[BIP61]: https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki
[BIP62]: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
[BIP66]: https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
[BIP70]: https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
[BIP71]: https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki
[BIP72]: https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki
[BIP130]: https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
[CVE-2012-2459]: https://en.bitcoin.it/wiki/CVEs#CVE-2012-2459
[RFC5737]: http://tools.ietf.org/html/rfc5737
[secp256k1]: http://www.secg.org/sec2-v2.pdf

{% comment %}{% endcomment %}
[#bitcoin]: https://webchat.freenode.net/?channels=bitcoin&uio=d4
[#bitcoin-dev]: https://webchat.freenode.net/?channels=bitcoin-dev&uio=d4
[#bitcoin-mining]: https://webchat.freenode.net/?channels=bitcoin-mining&uio=d4
[#bitcoin-wiki]: https://webchat.freenode.net/?channels=bitcoin-wiki&uio=d4
[0bin]: http://0bin.net/
[bcc automated testing]: https://github.com/bitcoin/bitcoin/blob/master/README.md#automated-testing
[bcc configuration]: https://en.bitcoin.it/wiki/Running_bitcoin
[bcc data directory]: https://en.bitcoin.it/wiki/Data_directory
[bcc issues]: https://github.com/bitcoin/bitcoin/issues
[bcc new issue]: https://github.com/bitcoin/bitcoin/issues/new
[bcc pulls]: https://github.com/bitcoin/bitcoin/pulls
[bcc tor]: https://en.bitcoin.it/wiki/Tor
[bcc tor hs]: https://en.bitcoin.it/wiki/Tor#Hidden_services
[core github tag]: https://github.com/bitcoin-dot-org/bitcoin.org/labels/Core
[BFGMiner]: https://github.com/luke-jr/bfgminer
[Bitcoin beginners]: http://www.reddit.com/r/bitcoinbeginners
[Bitcoin Core]: https://bitcoin.org/en/download
[Bitcoin Core 0.1.6]: https://github.com/bitcoin/bitcoin/commit/cc0b4c3b62367a2aebe5fc1f4d0ed4b97e9c2ac9
[Bitcoin Core 0.2.9]: https://github.com/bitcoin/bitcoin/commit/42605ce8bcc9bd01b86491c74fee14de77960868
[Bitcoin Core 0.3.11]: https://github.com/bitcoin/bitcoin/commit/343328c6b8db85e58a1feea85f0d10e62967fa19
[Bitcoin Core 0.3.15]: https://github.com/bitcoin/bitcoin/commit/c891967b6fcab2e8dc4ce0c787312b36c07efa4d
[Bitcoin Core 0.3.18]: https://github.com/bitcoin/bitcoin/commit/82201801336f64ee77851b9eaab9383ee4e442f0
[Bitcoin Core build unix]: https://github.com/bitcoin/bitcoin/blob/master/doc/build-unix.md
[Bitcoin Core docs directory]: https://github.com/bitcoin/bitcoin/tree/master/doc
[bitcoin core fee drop commit]: https://github.com/bitcoin/bitcoin/commit/6a4c196dd64da2fd33dc7ae77a8cdd3e4cf0eff1
[Bitcoin Core issue #2381]: https://github.com/bitcoin/bitcoin/issues/2381
[Bitcoin Core master]: https://github.com/bitcoin/bitcoin
[Bitcoin Core pull #4468]: https://github.com/bitcoin/bitcoin/pull/4468
[Bitcoin core transifex]: https://www.transifex.com/projects/p/bitcoin/
[Bitcoin reddit]: http://www.reddit.com/r/Bitcoin
[Bitcoin reddit new]: http://www.reddit.com/r/Bitcoin/new
[Bitcoin Seeder]: https://github.com/sipa/bitcoin-seeder
[Bitcoin stackexchange]: http://bitcoin.stackexchange.com
[Bitcoin stackexchange tag bitcoin-qt]: http://bitcoin.stackexchange.com/questions/tagged/bitcoin-qt
[bitcoin-documentation mailing list]: https://groups.google.com/forum/#!forum/bitcoin-documentation
[BitcoinJ]: http://bitcoinj.github.io
[BitcoinJ documentation about pending transaction safety]: https://bitcoinj.github.io/security-model#pending-transactions
[bitcoinj micropayment tutorial]: https://bitcoinj.github.io/working-with-micropayments
[block170]: https://www.biteasy.com/block/00000000d1145790a8694403d4063f323d499e655c83426834d4ce2f8dd4a2ee
[casascius address utility]: https://github.com/casascius/Bitcoin-Address-Utility
[core alert.cpp]: https://github.com/bitcoin/bitcoin/blob/master/src/alert.cpp
[core base58.h]: https://github.com/bitcoin/bitcoin/blob/master/src/base58.h
[core chainparams.cpp]: https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp
[core git]: https://github.com/bitcoin/bitcoin
[core paymentrequest.proto]: https://github.com/bitcoin/bitcoin/blob/master/src/qt/paymentrequest.proto
[core script.h]: https://github.com/bitcoin/bitcoin/blob/master/src/script/script.h
[creative commons attribution 3.0 license]: https://creativecommons.org/licenses/by/3.0/
[DER]: https://en.wikipedia.org/wiki/X.690#DER_encoding
[dig command]: https://en.wikipedia.org/wiki/Dig_%28Unix_command%29
[DNS A records]: http://tools.ietf.org/html/rfc1035#section-3.2.2
[DNS Seed Policy]: https://github.com/bitcoin/bitcoin/blob/master/doc/dnsseed-policy.md
[docs issue]: https://github.com/bitcoin-dot-org/bitcoin.org/issues
[ECDSA]: https://en.wikipedia.org/wiki/Elliptic_Curve_DSA
[edit bandwidth sharing guide]: https://github.com/bitcoin-dot-org/bitcoin.org/edit/master/en/full-node.md
[Electrum server]: https://github.com/spesmilo/electrum-server
[Eloipool]: https://github.com/luke-jr/eloipool
[errors in docs]: https://github.com/bitcoin-dot-org/bitcoin.org/issues?q=is%3Aissue+label%3A%22Dev+Docs%22
[fake satoshi transaction]: https://www.reddit.com/r/Bitcoin/comments/3fv42j/blockchaininfo_spoofed_transactions_problem_aug_4/
[forum tech support]: https://bitcointalk.org/index.php?board=4.0
[ghash betcoin double spend]: https://bitcointalk.org/index.php?topic=321630.msg3445371
[gitian sigs]: https://github.com/bitcoin/gitian.sigs
[high-speed block relay network]: https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03189.html
[HMAC-SHA512]: https://en.wikipedia.org/wiki/HMAC
[HTTP basic authentication]: https://en.wikipedia.org/wiki/Basic_access_authentication
[HTTP longpoll]: https://en.wikipedia.org/wiki/Push_technology#Long_polling
[information theoretic security]: https://en.wikipedia.org/wiki/Information_theoretic_security
[inherit bitcoins]: http://bitcoin.stackexchange.com/q/38692/21052
[IP-to-IP payment protocol]: https://en.bitcoin.it/wiki/IP_Transactions
[IPv4-mapped IPv6 addresses]: http://en.wikipedia.org/wiki/IPv6#IPv4-mapped_IPv6_addresses
[irc channels]: https://en.bitcoin.it/wiki/IRC_channels
[JSON-RPC version 1.0]: http://json-rpc.org/wiki/specification
[JSON-RPC request batching]: http://www.jsonrpc.org/specification#batch
[july 2015 chain forks]: https://en.bitcoin.it/wiki/July_2015_chain_forks
[libblkmaker]: https://github.com/bitcoin/libblkmaker
[localhost]: https://en.wikipedia.org/wiki/Localhost
[lying consistently is hard]: https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
[makeseeds script]: https://github.com/bitcoin/bitcoin/tree/master/contrib/seeds
[mozilla’s bug reporting documentation]: https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines#Writing_precise_steps_to_reproduce
[murmur3]: https://en.wikipedia.org/wiki/MurmurHash
[man-in-the-middle]: https://en.wikipedia.org/wiki/Man-in-the-middle_attack
[MIME]: https://en.wikipedia.org/wiki/Internet_media_type
[MIT license]: http://opensource.org/licenses/MIT
[mozrootstore]: https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
[native irc client]: https://en.wikipedia.org/wiki/List_of_IRC_clients
[netcat]: https://en.wikipedia.org/wiki/Netcat
[nop opcodes]: https://en.bitcoin.it/wiki/Script#Reserved_words
[offline transactions]: http://bitcoin.stackexchange.com/a/34122/21052
[open a pull request]: https://github.com/bitcoin-dot-org/bitcoin.org#working-with-github
[open an issue]: https://github.com/bitcoin-dot-org/bitcoin.org/issues/new
[Payment Request Generator]: http://bitcoincore.org/~gavin/createpaymentrequest.php
[Piotr Piasecki’s testnet faucet]: https://tpfaucet.appspot.com/
[prime symbol]: https://en.wikipedia.org/wiki/Prime_%28symbol%29
[protobuf]: https://developers.google.com/protocol-buffers/
[python-bitcoinlib]: https://github.com/petertodd/python-bitcoinlib
[python-blkmaker]: https://gitorious.org/bitcoin/python-blkmaker
[Satoshi Nakamoto]: https://en.bitcoin.it/wiki/Satoshi_Nakamoto
[setup tor]: https://www.torproject.org/
[SHA256]: https://en.wikipedia.org/wiki/SHA-2
[Stratum mining protocol]: http://mining.bitcoin.cz/stratum-mining
[study of SPV privacy over tor]: http://arxiv.org/abs/1410.6079
[Tor]: https://en.wikipedia.org/wiki/Tor_%28anonymity_network%29
[transifex]: https://www.transifex.com/projects/p/bitcoinorg/
[unix epoch time]: https://en.wikipedia.org/wiki/Unix_time
[URI encoded]: https://tools.ietf.org/html/rfc3986
[wiki bitcoin core compatible devices arm]: https://en.bitcoin.it/wiki/Bitcoin_Core_compatible_devices#ARM-based_Chipsets
[wiki bitcoin core documentation]: https://en.bitcoin.it/wiki/Category:Bitcoin_Core_documentation
[wiki create account]: https://en.bitcoin.it/w/index.php?title=Special:UserLogin&type=signup
[wiki enable editing]: https://en.bitcoin.it/wiki/Bitcoin_Wiki:Editing_privileges
[wiki getblocktemplate]: https://en.bitcoin.it/wiki/Getblocktemplate
[wiki proper money handling]: https://en.bitcoin.it/wiki/Proper_Money_Handling_%28JSON-RPC%29
[wiki template bitcoin core documentation]: https://en.bitcoin.it/wiki/Template:Bitcoin_Core_documentation
[wiki script]: https://en.bitcoin.it/wiki/Script
[x509]: https://en.wikipedia.org/wiki/X.509

{% comment %} {% endcomment %}
[core bloom.cpp hash]: https://github.com/bitcoin/bitcoin/blob/cbf28c6619fe348a258dfd7d08bdbd2392d07511/src/bloom.cpp#L46
[MAX_SIZE]: https://github.com/bitcoin/bitcoin/blob/60abd463ac2eaa8bc1d616d8c07880dc53d97211/src/serialize.h#L23
[rpcprotocol.h]: https://github.com/bitcoin/bitcoin/blob/f914f1a746d7f91951c1da262a4a749dd3ebfa71/src/rpcprotocol.h



          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}


	Legal: Bitcoin use is prohibited or restricted in some
areas. [https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country]

	Bandwidth limits: Some Internet plans will charge an additional
amount for any excess upload bandwidth used that isn’t included in
the plan. Worse, some providers may terminate your connection without
warning because of overuse. We advise that you check whether your
Internet connection is subjected to such limitations and monitor your
bandwidth use so that you can stop Bitcoin Core before you reach your
upload limit.

	Anti-virus: Several people have placed parts of known computer
viruses in the Bitcoin block chain. This block chain data can’t infect
your computer, but some anti-virus programs quarantine the data
anyway, making it more difficult to run Bitcoin Core. This problem mostly
affects computers running Windows.

	Attack target: Bitcoin Core powers the Bitcoin peer-to-peer
network, so people who want to disrupt the network may
attack Bitcoin Core users in ways that will affect other things
you do with your computer, such as an attack that limits your
available download bandwidth.





          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}


	Adam Back [https://github.com/adam3us]

	Alex Morcos [https://github.com/morcos]

	Aaron Voisine [https://github.com/voisine]

	Ben Davenport [https://github.com/bpdavenport]

	Ben Gorlick [https://github.com/bgorlick]

	Bram Cohen [https://github.com/bramcohen]

	Bryan Bishop [https://github.com/kanzure]

	BtcDrak [https://github.com/btcdrak]

	Charlie Lee [https://github.com/coblee]

	Christian Decker [https://github.com/cdecker]

	Cøbra [https://github.com/cobra-bitcoin]

	Cory Fields [https://github.com/theuni]

	Craig Watkins [https://github.com/crwatkins]

	Daniel [https://github.com/arowser]

	Daniel Kraft [https://github.com/domob1812]

	David A. Harding [https://github.com/harding]

	David Vorick [https://github.com/DavidVorick]

	Dev Random [https://github.com/devrandom]

	DexX7 [https://github.com/dexX7]

	Douglas Huff [https://github.com/jrmithdobbs]

	Eric Lombrozo [https://github.com/CodeShark]

	Glenn H Tarbox [https://github.com/ghtdak]

	Gregory Maxwell [https://github.com/gmaxwell]

	Gregory Sanders [https://github.com/instagibbs]

	James Hilliard [https://github.com/jameshilliard]

	Johnathan Corgan [https://github.com/jmcorgan]

	Johnson Lau [https://github.com/jl2012]

	Jonas Schnelli [https://github.com/jonasschnelli]

	Jouke Hofman [https://github.com/Joukehofman]

	Lawrence Nahum [https://github.com/greenaddress]

	Luke Dashjr [https://github.com/luke-jr]

	Mark Friedenbach [https://github.com/maaku]

	Eric Martindale [https://github.com/martindale]

	Manuel Aráoz [https://github.com/maraoz]

	Marco Falke [https://github.com/MarcoFalke]

	Matt Corallo [https://github.com/TheBlueMatt]

	Midnight Magic [https://github.com/midnightmagic]

	Michael Ford [https://github.com/fanquake]

	Nicolas Bacca [https://github.com/btchip]

	Nicolas Dorier [https://github.com/NicolasDorier]

	Obi Nwosu [https://github.com/obi]

	Patrick Strateman [https://github.com/pstratem]

	Pavel Janik [https://github.com/paveljanik]

	Peter Todd [https://github.com/petertodd]

	Pieter Wuille [https://github.com/sipa]

	Randy Waterhouse [https://github.com/randy-waterhouse]

	Rodolfo Novak [https://github.com/nvk]

	Ruben de Vries [https://github.com/rubensayshi]

	Suhas Daftuar [https://github.com/sdaftuar]

	Theymos [https://github.com/theymos]

	Thomas Kerin [https://github.com/afk11]

	Wang Chun [https://github.com/wangchun]

	Warren Togami [https://github.com/wtogami]

	Wladimir J. van der Laan [https://github.com/laanwj]





          

      

      

    

  

  
    
    
    Payment Processing
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/example_payment_processing.md” %}


Payment Processing

{% include helpers/subhead-links.md %}


Payment Protocol

{% include helpers/subhead-links.md %}

{% autocrossref %}

To request payment using the payment protocol, you use an extended (but
backwards-compatible) bitcoin: URI.  For example:

{% endautocrossref %}

bitcoin:mjSk1Ny9spzU2fouzYgLqGUD8U41iR35QN\
?amount=0.10\
&label=Example+Merchant\
&message=Order+of+flowers+%26+chocolates\
&r=https://example.com/pay.php/invoice%3Dda39a3ee





{% autocrossref %}

The browser, QR code reader, or other program processing the URI opens
the spender’s Bitcoin wallet program on the URI. If the wallet program is
aware of the payment protocol, it accesses the URL specified in the r
parameter, which should provide it with a serialized PaymentRequest
served with the [MIME][] type application/bitcoin-paymentrequest.

Resource: Gavin Andresen’s [Payment Request Generator][] generates
custom example URIs and payment requests for use with testnet.

{% endautocrossref %}


PaymentRequest & PaymentDetails

{% include helpers/subhead-links.md %}

{% autocrossref %}

The [PaymentRequest][]{:#term-paymentrequest}{:.term} is created with data structures built using
Google’s Protocol Buffers. BIP70 describes these data
structures in the non-sequential way they’re defined in the payment
request protocol buffer code, but the text below will describe them in
a more linear order using a simple (but functional) Python CGI
program. (For brevity and clarity, many normal CGI best practices are
not used in this program.)

The full sequence of events is illustrated below, starting with the
spender clicking a bitcoin: URI or scanning a bitcoin: QR code.

[image: BIP70 Payment Protocol]

For the script to use the protocol buffer, you will need a copy of
Google’s Protocol Buffer compiler (protoc), which is available in most
modern Linux package managers and [directly from Google.][protobuf] Non-Google
protocol buffer compilers are available for a variety of
programming languages. You will also need a copy of the PaymentRequest
[Protocol Buffer description][core paymentrequest.proto] from the Bitcoin Core source code.

{% endautocrossref %}


Initialization Code

{% include helpers/subhead-links.md %}

{% autocrossref %}

With the Python code generated by protoc, we can start our simple
CGI program.

{% highlight python %}
#!/usr/bin/env python










This is the code generated by protoc –python_out=./ paymentrequest.proto

from paymentrequest_pb2 import *




Load some functions

from time import time
from sys import stdout
from OpenSSL.crypto import FILETYPE_PEM, load_privatekey, sign




Copy three of the classes created by protoc into objects we can use

details = PaymentDetails()
request = PaymentRequest()
x509 = X509Certificates()
{% endhighlight %}

The startup code above is quite simple, requiring nothing but the epoch
(Unix date) time function, the standard out file descriptor, a few
functions from the OpenSSL library, and the data structures and
functions created by protoc.

{% endautocrossref %}


Configuration Code

{% include helpers/subhead-links.md %}

{% autocrossref %}

Next, we’ll set configuration settings which will typically only change
when the receiver wants to do something differently. The code pushes a
few settings into the request (PaymentRequest) and details
(PaymentDetails) objects. When we serialize them,
[PaymentDetails][]{:#term-paymentdetails}{:.term} will be contained
within the PaymentRequest.

{% highlight python %}






SSL Signature method

request.pki_type = “x509+sha256”  ## Default: none




Mainnet or testnet?

details.network = “test”  ## Default: main




Postback URL

details.payment_url = “https://example.com/pay.py”




PaymentDetails version number

request.payment_details_version = 1  ## Default: 1




Certificate chain

x509.certificate.append(file(“/etc/apache2/example.com-cert.der”, “r”).read())
#x509.certificate.append(file(“/some/intermediate/cert.der”, “r”).read())




Load private SSL key into memory for signing later

priv_key = “/etc/apache2/example.com-key.pem”
pw = “test”  ## Key password
private_key = load_privatekey(FILETYPE_PEM, file(priv_key, “r”).read(), pw)
{% endhighlight %}

Each line is described below.

{% highlight python %}
request.pki_type = “x509+sha256”  ## Default: none
{% endhighlight %}

pki_type: (optional) tell the receiving wallet program what [Public-Key
Infrastructure][PKI]{:#term-pki}{:.term} (PKI) type you’re using to
cryptographically sign your PaymentRequest so that it can’t be modified
by a man-in-the-middle attack.

If you don’t want to sign the PaymentRequest, you can choose a
[pki_type][pp pki type]{:#term-pp-pki-type}{:.term} of none
(the default).

If you do choose the sign the PaymentRequest, you currently have two
options defined by BIP70: x509+sha1 and x509+sha256.  Both options
use the X.509 certificate system, the same system used for HTTP Secure
(HTTPS).  To use either option, you will need a certificate signed by a
certificate authority or one of their intermediaries. (A self-signed
certificate will not work.)

Each wallet program may choose which certificate authorities to trust,
but it’s likely that they’ll trust whatever certificate authorities their
operating system trusts.  If the wallet program doesn’t have a full
operating system, as might be the case for small hardware wallets, BIP70
suggests they use the [Mozilla Root Certificate Store][mozrootstore]. In
general, if a certificate works in your web browser when you connect to
your webserver, it will work for your PaymentRequests.

{% highlight python %}
details.network = “test”  ## Default: main
{% endhighlight %}

network: (optional) tell the spender’s wallet program what Bitcoin network you’re
using; BIP70 defines “main” for mainnet (actual payments) and “test” for
testnet (like mainnet, but fake satoshis are used). If the wallet
program doesn’t run on the network you indicate, it will reject the
PaymentRequest.

{% highlight python %}
details.payment_url = “https://example.com/pay.py”
{% endhighlight %}

payment_url: (required) tell the spender’s wallet program where to send the Payment
message (described later). This can be a static URL, as in this example,
or a variable URL such as https://example.com/pay.py?invoice=123.
It should usually be an HTTPS address to prevent man-in-the-middle
attacks from modifying the message.

{% highlight python %}
request.payment_details_version = 1  ## Default: 1
{% endhighlight %}

payment_details_version: (optional) tell the spender’s wallet program what version of the
PaymentDetails you’re using. As of this writing, the only version is
version 1.

{% highlight python %}




This is the pubkey/certificate corresponding to the private SSL key




that we’ll use to sign:

x509.certificate.append(file(“/etc/apache2/example.com-cert.der”, “r”).read())
{% endhighlight %}

x509certificates: (required for signed PaymentRequests) you must
provide the public SSL key/certificate corresponding to the private SSL
key you’ll use to sign the PaymentRequest. The certificate must be in
ASN.1/DER format.

{% highlight python %}




If the pubkey/cert above didn’t have the signature of a root




certificate authority, we’d then append the intermediate certificate




which signed it:

#x509.certificate.append(file(“/some/intermediate/cert.der”, “r”).read())
{% endhighlight %}

You must also provide any intermediate certificates necessary to link
your certificate to the root certificate of a certificate authority
trusted by the spender’s software, such as a certificate from the
Mozilla root store.

The certificates must be provided in a specific order—the same order
used by Apache’s SSLCertificateFile directive and other server
software.   The figure below shows the [certificate chain][]{:#term-certificate-chain}{:.term} of the
www.bitcoin.org X.509 certificate and how each certificate (except the
root certificate) would be loaded into the [X509Certificates][]{:#term-x509certificates}{:.term} protocol
buffer message.

[image: X509Certificates Loading Order]

To be specific, the first certificate provided must be the
X.509 certificate corresponding to the private SSL key which will make the
signature, called the [leaf certificate][]{:#term-leaf-certificate}{:.term}. Any [intermediate
certificates][intermediate certificate]{:#term-intermediate-certificate}{:.term} necessary to link that signed public SSL
key to the [root
certificate][]{:#term-root-certificate}{:.term} (the certificate authority) are attached separately, with each
certificate in DER format bearing the signature of the certificate that
follows it all the way to (but not including) the root certificate.

{% highlight python %}
priv_key = “/etc/apache2/example.com-key.pem”
pw = “test”  ## Key password
private_key = load_privatekey(FILETYPE_PEM, file(priv_key, “r”).read(), pw)
{% endhighlight %}

(Required for signed PaymentRequests) you will need a private SSL key in
a format your SSL library supports (DER format is not required). In this
program, we’ll load it from a PEM file. (Embedding your passphrase in
your CGI code, as done here, is obviously a bad idea in real life.)

The private SSL key will not be transmitted with your request. We’re
only loading it into memory here so we can use it to sign the request
later.

{% endautocrossref %}


Code Variables

{% include helpers/subhead-links.md %}

{% autocrossref %}

Now let’s look at the variables your CGI program will likely set for
each payment.

{% highlight python %}






Amount of the request

amount = 10000000  ## In satoshis




P2PKH pubkey hash

pubkey_hash = “2b14950b8d31620c6cc923c5408a701b1ec0a020”




P2PKH pubkey script entered as hex and converted to binary




OP_DUP OP_HASH160 <push 20 bytes> 
  
    
    
    Operating Modes
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/guide_operating_modes.md” %}


Operating Modes

{% include helpers/subhead-links.md %}

{% autocrossref %}

Currently there are two primary methods of validating the block chain as a client: Full nodes and SPV clients. Other methods, such as server-trusting methods, are not discussed as they are not recommended.

{% endautocrossref %}


Full Node

{% include helpers/subhead-links.md %}

{% autocrossref %}

The first and most secure model is the one followed by Bitcoin Core, also known as a “thick” or “full chain” client. This security model assures the validity of the block chain by downloading and validating blocks from the genesis block all the way to the most recently discovered block. This is known as using the height of a particular block to verify the client’s view of the network.

For a client to be fooled, an adversary would need to give a complete alternative block chain history that is of greater difficulty than the current “true” chain, which is impossible due to the fact that the longest chain is by definition the true chain. After the suggested six confirmations, the ability to fool the client become intractable, as only a single honest network node is needed to have the complete state of the block chain.

[image: Block Height Compared To Block Depth]

{% endautocrossref %}




Simplified Payment Verification (SPV)

{% include helpers/subhead-links.md %}

{% autocrossref %}

An alternative approach detailed in the [original Bitcoin paper][bitcoinpdf] is a client that only downloads the headers of blocks during the initial syncing process and then requests transactions from full nodes as needed. This scales linearly with the height of the block chain at only 80 bytes per block header, or up to 4.2MB per year, regardless of total block size.

As described in the white paper, the merkle root in the block header along with a merkle branch can prove to the SPV client that the transaction in question is embedded in a block in the block chain. This does not guarantee validity of the transactions that are embedded. Instead it demonstrates the amount of work required to perform a double-spend attack.

The block’s depth in the block chain corresponds to the cumulative difficulty that has been performed to build on top of that particular block. The SPV client knows the merkle root and associated transaction information, and requests the respective merkle branch from a full node. Once the merkle branch has been retrieved, proving the existence of the transaction in the block, the SPV client can then look to block depth as a proxy for transaction validity and security. The cost of an attack on a user by a malicious node who inserts an invalid transaction grows with the cumulative difficulty built on top of that block, since the malicious node alone will be mining this forged chain.

{% endautocrossref %}


Potential SPV Weaknesses

{% include helpers/subhead-links.md %}

{% autocrossref %}

If implemented naively, an SPV client has a few important weaknesses.

First, while the SPV client can not be easily fooled into thinking a transaction is in a block when it is not, the reverse is not true. A full node can simply lie by omission, leading an SPV client to believe a transaction has not occurred. This can be considered a form of Denial of Service. One mitigation strategy is to connect to a number of full nodes, and send the requests to each node. However this can be defeated by network partitioning or Sybil attacks, since identities are essentially free, and can be bandwidth intensive. Care must be taken to ensure the client is not cut off from honest nodes.

Second, the SPV client only requests transactions from full nodes corresponding to keys it owns. If the SPV client downloads all blocks and then discards unneeded ones, this can be extremely bandwidth intensive. If they simply ask full nodes for blocks with specific transactions, this allows full nodes a complete view of the public addresses that correspond to the user. This is a large privacy leak, and allows for tactics such as denial of service for clients, users, or addresses that are disfavored by those running full nodes, as well as trivial linking of funds. A client could simply spam many fake transaction requests, but this creates a large strain on the SPV client, and can end up defeating the purpose of thin clients altogether.

To mitigate the latter issue, Bloom filters have been implemented as a method of obfuscation and compression of block data requests.

{% endautocrossref %}




Bloom Filters

{% include helpers/subhead-links.md %}

{% autocrossref %}

A Bloom filter is a space-efficient probabilistic data structure that is used to test membership of an element. The data structure achieves great data compression at the expense of a prescribed false positive rate.

A Bloom filter starts out as an array of n bits all set to 0. A set of k random hash functions are chosen, each of which output a single integer between the range of 1 and n.

When adding an element to the Bloom filter, the element is hashed k times separately, and for each of the k outputs, the corresponding Bloom filter bit at that index is set to 1.

Querying of the Bloom filter is done by using the same hash functions as before. If all k bits accessed in the bloom filter are set to 1, this demonstrates with high probability that the element lies in the set. Clearly, the k indices could have been set to 1 by the addition of a combination of other elements in the domain, but the parameters allow the user to choose the acceptable false positive rate.

Removal of elements can only be done by scrapping the bloom filter and re-creating it from scratch.

{% endautocrossref %}




Application Of Bloom Filters

{% include helpers/subhead-links.md %}

{% autocrossref %}

Rather than viewing the false positive rates as a liability, it is used to create a tunable parameter that represents the desired privacy level and bandwidth trade-off. A SPV client creates their Bloom filter and sends it to a full node using the message filterload, which sets the filter for which transactions are desired. The command filteradd allows addition of desired data to the filter without needing to send a totally new Bloom filter, and filterclear allows the connection to revert to standard block discovery mechanisms. If the filter has been loaded, then full nodes will send a modified form of blocks, called a merkle block. The merkle block is simply the block header with the merkle branch associated with the set Bloom filter.

An SPV client can not only add transactions as elements to the filter, but also public keys, data from signature
scripts and pubkey scripts, and more. This enables P2SH transaction finding.

If a user is more privacy-conscious, he can set the Bloom filter to include more false positives, at the expense of extra bandwidth used for transaction discovery. If a user is on a tight bandwidth budget, he can set the false-positive rate to low, knowing that this will allow full nodes a clear view of what transactions are associated with his client.

Resources: [BitcoinJ][], a Java implementation of Bitcoin that is based on the SPV security model and Bloom filters. Used in most Android wallets.

Bloom filters were standardized for use via BIP37 [https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki]. Review the BIP for implementation details.

{% endautocrossref %}






Future Proposals

{% include helpers/subhead-links.md %}

{% autocrossref %}

There are future proposals such as Unspent Transaction Output (UTXO) commitments in the block chain to find a more satisfactory middle-ground for clients between needing a complete copy of the block chain, or trusting that a majority of your connected peers are not lying. UTXO commitments would enable a very secure client using a finite amount of storage using a data structure that is authenticated in the block chain. These type of proposals are, however, in very early stages, and will require soft forks in the network.

Until these types of operating modes are implemented, modes should be chosen based on the likely threat model, computing and bandwidth constraints, and liability in bitcoin value.

Resources: Original Thread on UTXO Commitments [https://bitcointalk.org/index.php?topic=88208.0], Authenticated Prefix Trees BIP Proposal [https://github.com/maaku/bips/blob/master/drafts/auth-trie.mediawiki]

{% endautocrossref %}







          

      

      

    

  

  
    
    
    P2P Network
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/guide_p2p_network.md” %}


P2P Network

{% include helpers/subhead-links.md %}

{% autocrossref %}

The Bitcoin network protocol allows full nodes
([peers][peer]{:#term-peer}{:.term}) to collaboratively maintain a
[peer-to-peer network][network]{:#term-network}{:.term} for block and
transaction exchange. Many SPV clients also use this protocol to connect
to full nodes.

Consensus rules do not cover networking, so Bitcoin programs may use
alternative networks and protocols, such as the [high-speed block relay
network][] used by some miners and the [dedicated transaction
information servers][electrum server] used by some wallets that provide
SPV-level security.

To provide practical examples of the Bitcoin peer-to-peer network, this
section uses Bitcoin Core as a representative full node and [BitcoinJ][]
as a representative SPV client. Both programs are flexible, so only
default behavior is described. Also, for privacy, actual IP addresses
in the example output below have been replaced with [RFC5737][] reserved
IP addresses.

{% endautocrossref %}


Peer Discovery

{% include helpers/subhead-links.md %}

{% autocrossref %}

When started for the first time, programs don’t know the IP
addresses of any active full nodes. In order to discover some IP
addresses, they query one or more DNS names (called [DNS seeds][/en/glossary/dns-seed]{:#term-dns-seed}{:.term})
hardcoded into Bitcoin Core and
BitcoinJ. The response to the lookup should include one or more [DNS
A records][] with the IP addresses of full nodes that may accept new
incoming connections. For example, using the [Unix dig
command][dig command]:

;; QUESTION SECTION:
;seed.bitcoin.sipa.be.      IN  A

;; ANSWER SECTION:
seed.bitcoin.sipa.be.   60  IN  A  192.0.2.113
seed.bitcoin.sipa.be.   60  IN  A  198.51.100.231
seed.bitcoin.sipa.be.   60  IN  A  203.0.113.183
[...]





The DNS seeds are maintained by Bitcoin community members: some of them
provide dynamic DNS seed servers which automatically get IP addresses
of active nodes by scanning the network; others provide static DNS
seeds that are updated manually and are more likely to provide IP
addresses for inactive nodes. In either case, nodes are added to the
DNS seed if they run on the default Bitcoin ports of 8333 for mainnet
or 18333 for testnet.

DNS seed results are not authenticated and a malicious seed operator or
network man-in-the-middle attacker can return only IP addresses of
nodes controlled by the attacker, isolating a program on the attacker’s
own network and allowing the attacker to feed it bogus transactions and
blocks.  For this reason, programs should not rely on DNS seeds
exclusively.

Once a program has connected to the network, its peers can begin to send
it addr
(address) messages with the IP addresses and port numbers of
other peers on the network, providing a fully decentralized method of
peer discovery. Bitcoin Core keeps a record of known peers in a
persistent on-disk database which usually allows it to connect directly
to those peers on subsequent startups without having to use DNS seeds.

However, peers often leave the network or change IP addresses, so
programs may need to make several different connection attempts at
startup before a successful connection is made. This can add a
significant delay to the amount of time it takes to connect to the
network, forcing a user to wait before sending a transaction or checking
the status of payment.

To avoid this possible delay, BitcoinJ always uses dynamic DNS seeds to
get IP addresses for nodes believed to be currently active.
Bitcoin Core also tries to strike a balance between minimizing delays
and avoiding unnecessary DNS seed use: if Bitcoin Core has entries in
its peer database, it spends up to 11 seconds attempting to connect to
at least one of them before falling back to seeds; if a connection is
made within that time, it does not query any seeds.

Both Bitcoin Core and BitcoinJ also include a hardcoded list of IP
addresses and port numbers to several dozen nodes which were active
around the time that particular version of the software was first
released. Bitcoin Core will start attempting to connect to these nodes
if none of the DNS seed servers have responded to a query within 60
seconds, providing an automatic fallback option.

As a manual fallback option, Bitcoin Core also provides several
command-line connection options, including the ability to get a list of
peers from a specific node by IP address, or to make a persistent
connection to a specific node by IP address.  See the -help text for
details.  BitcoinJ can be programmed to do the same thing.

Resources: [Bitcoin Seeder][], the program run by several of the
seeds used by Bitcoin Core and BitcoinJ. The Bitcoin Core [DNS Seed
Policy][].  The hardcoded list of IP addresses used by Bitcoin Core and
BitcoinJ is generated using the [makeseeds script][].

{% endautocrossref %}




Connecting To Peers

{% include helpers/subhead-links.md %}

{% autocrossref %}

Connecting to a peer is done by sending a version message, which
contains your version number, block, and current time to the remote
node. The remote node responds with its own version message. Then both
nodes send a verack message to the other node to indicate the
connection has been established.

Once connected, the client can send to the remote node getaddr and addr messages to gather additional peers.

In order to maintain a connection with a peer, nodes by default will send a message to peers before 30 minutes of inactivity. If 90 minutes pass without a message being received by a peer, the client will assume that connection has closed.

{% endautocrossref %}




Initial Block Download

{% include helpers/subhead-links.md %}

{% autocrossref %}

Before a full node can validate unconfirmed transactions and
recently-mined blocks, it must download and validate all blocks from
block 1 (the block after the hardcoded genesis block) to the current tip
of the best block chain. This is the Initial Block Download (IBD) or
initial sync.

Although the word “initial” implies this method is only used once, it
can also be used any time a large number of blocks need to be
downloaded, such as when a previously-caught-up node has been offline
for a long time. In this case, a node can use the IBD method to download
all the blocks which were produced since the last time it was online.

Bitcoin Core uses the IBD method any time the last block on its local
best block chain has a block header time more than 24 hours in the past.
Bitcoin Core 0.10.0 will also perform IBD if its local best block chain is
more than 144 blocks lower than its local best header chain (that is,
the local block chain is more than about 24 hours in the past).

{% endautocrossref %}


Blocks-First

{% include helpers/subhead-links.md %}

{% autocrossref %}

Bitcoin Core (up until version [0.9.3][bitcoin core 0.9.3]) uses a
simple initial block download (IBD) method we’ll call blocks-first.
The goal is to download the blocks from the best block chain in sequence.

[image: Overview Of Blocks-First Method]

The first time a node is started, it only has a single block in its
local best block chain—the hardcoded genesis block (block 0).  This
node chooses a remote peer, called the sync node, and sends it the
getblocks message illustrated below.

[image: First GetBlocks Message Sent During IBD]

In the header hashes field of the getblocks message, this new node
sends the header hash of the only block it has, the genesis block
(6fe2...0000 in internal byte order).  It also sets the stop hash field
to all zeroes to request a maximum-size response.

Upon receipt of the getblocks message, the sync node takes the first
(and only) header hash and searches its local best block chain for a
block with that header hash. It finds that block 0 matches, so it
replies with 500 block inventories (the maximum response to a
getblocks message) starting from block 1. It sends these inventories
in the inv message illustrated below.

[image: First Inv Message Sent During IBD]

Inventories are unique identifiers for information on the network. Each
inventory contains a type field and the unique identifier for an
instance of the object. For blocks, the unique identifier is a hash of
the block’s header.

The block inventories appear in the inv message in the same order they
appear in the block chain, so this first inv message contains
inventories for blocks 1 through 501. (For example, the hash of block 1
is 4860...0000 as seen in the illustration above.)

The IBD node uses the received inventories to request 128 blocks from
the sync node in the getdata message illustrated below.

[image: First GetData Message Sent During IBD]

It’s important to blocks-first nodes that the blocks be requested and
sent in order because each block header references the header hash of
the preceding block. That means the IBD node can’t fully validate a
block until its parent block has been received. Blocks that can’t be
validated because their parents haven’t been received are called orphan
blocks; a subsection below describes them in more detail.

Upon receipt of the getdata message, the sync node replies with each
of the blocks requested. Each block is put into serialized block format
and sent in a separate block message. The first block message sent
(for block 1) is illustrated below.

[image: First Block Message Sent During IBD]

The IBD node downloads each block, validates it, and then requests the
next block it hasn’t requested yet, maintaining a queue of up to 128
blocks to download. When it has requested every block for which it has
an inventory, it sends another getblocks message to the sync node
requesting the inventories of up to 500 more blocks.  This second
getblocks message contains multiple header hashes as illustrated
below:

[image: Second GetBlocks Message Sent During IBD]

Upon receipt of the second getblocks message, the sync node searches
its local best block chain for a block that matches one of the header
hashes in the message, trying each hash in the order they were received.
If it finds a matching hash, it replies with 500 block inventories
starting with the next block from that point. But if there is no
matching hash (besides the stopping hash), it assumes the only block the
two nodes have in common is block 0 and so it sends an inv starting with
block 1 (the same inv message seen several illustrations above).

This repeated search allows the sync node to send useful inventories even if
the IBD node’s local block chain forked from the sync node’s local block
chain. This fork detection becomes increasingly useful the closer the
IBD node gets to the tip of the block chain.

When the IBD node receives the second inv message, it will request
those blocks using getdata messages.  The sync node will respond with
block messages.  Then the IBD node will request more inventories with
another getblocks message—and the cycle will repeat until the IBD
node is synced to the tip of the block chain.  At that point, the node
will accept blocks sent through the regular block broadcasting described
in a later subsection.

{% endautocrossref %}


Blocks-First Advantages & Disadvantages

{:.no_toc}
{% include helpers/subhead-links.md %}

{% autocrossref %}

The primary advantage of blocks-first IBD is its simplicity. The primary
disadvantage is that the IBD node relies on a single sync node for all
of its downloading. This has several implications:


	Speed Limits: All requests are made to the sync node, so if the
sync node has limited upload bandwidth, the IBD node will have slow
download speeds.  Note: if the sync node goes offline, Bitcoin Core
will continue downloading from another node—but it will still only
download from a single sync node at a time.

	Download Restarts: The sync node can send a non-best (but
otherwise valid) block chain to the IBD node. The IBD node won’t be
able to identify it as non-best until the initial block download nears
completion, forcing the IBD node to restart its block chain download
over again from a different node. Bitcoin Core ships with several
block chain checkpoints at various block heights selected by
developers to help an IBD node detect that it is being fed an
alternative block chain history—allowing the IBD node to restart
its download earlier in the process.

	Disk Fill Attacks: Closely related to the download restarts, if
the sync node sends a non-best (but otherwise valid) block chain, the
chain will be stored on disk, wasting space and possibly filling up
the disk drive with useless data.

	High Memory Use: Whether maliciously or by accident, the sync node
can send blocks out of order, creating orphan blocks which can’t be
validated until their parents have been received and validated.
Orphan blocks are stored in memory while they await validation,
which may lead to high memory use.



All of these problems are addressed in part or in full by the
headers-first IBD method used in Bitcoin Core 0.10.0.

Resources: The table below summarizes the messages mentioned
throughout this subsection. The links in the message field will take you
to the reference page for that message.

| Message | [getblocks][getblocks message] | [inv][inv message]                             | [getdata][getdata message]  | [block][block message]
| From→To | IBD→Sync                         | Sync→IBD                                         | IBD→Sync                      | Sync→IBD
| Payload | One or more header hashes        | Up to 500 block inventories (unique identifiers) | One or more block inventories | One serialized block

{% endautocrossref %}






Headers-First

{% include helpers/subhead-links.md %}

{% autocrossref %}

Bitcoin Core 0.10.0 uses an initial block download (IBD) method called
headers-first. The goal is to download the headers for the best [header
chain][/en/glossary/header-chain]{:#term-header-chain}{:.term}, partially validate them as best
as possible, and then download the corresponding blocks in parallel.  This
solves several problems with the older blocks-first IBD method.

[image: Overview Of Headers-First Method]

The first time a node is started, it only has a single block in its
local best block chain—the hardcoded genesis block (block 0).  The
node chooses a remote peer, which we’ll call the sync node, and sends it the
getheaders message illustrated below.

[image: First getheaders message]

In the header hashes field of the getheaders message, the new node
sends the header hash of the only block it has, the genesis block
(6fe2...0000 in internal byte order).  It also sets the stop hash field
to all zeroes to request a maximum-size response.

Upon receipt of the getheaders message, the sync node takes the first
(and only) header hash and searches its local best block chain for a
block with that header hash. It finds that block 0 matches, so it
replies with 2,000 header (the maximum response) starting from
block 1. It sends these header hashes in the headers message
illustrated below.

[image: First headers message]

The IBD node can partially validate these block headers by ensuring that
all fields follow consensus rules and that the hash of the header is
below the target threshold according to the nBits field.  (Full
validation still requires all transactions from the corresponding
block.)

After the IBD node has partially validated the block headers, it can do
two things in parallel:


	Download More Headers: the IBD node can send another getheaders
message to the sync node to request the next 2,000 headers on the
best header chain. Those headers can be immediately validated and
another batch requested repeatedly until a headers message is
received from the sync node with fewer than 2,000 headers, indicating
that it has no more headers to offer. As of this writing, headers
sync can be completed in fewer than 200 round trips, or about 32 MB
of downloaded data.

Once the IBD node receives a headers message with fewer than 2,000
headers from the sync node, it sends a getheaders message to each
of its outbound peers to get their view of best header chain. By
comparing the responses, it can easily determine if the headers it
has downloaded belong to the best header chain reported by any of
its outbound peers. This means a dishonest sync node will quickly be
discovered even if checkpoints aren’t used (as long as the IBD node
connects to at least one honest peer; Bitcoin Core will continue to
provide checkpoints in case honest peers can’t be found).



	Download Blocks: While the IBD node continues downloading
headers, and after the headers finish downloading, the IBD node will
request and download each block. The IBD node can use the block
header hashes it computed from the header chain to create getdata
messages that request the blocks it needs by their inventory. It
doesn’t need to request these from the sync node—it can request
them from any of its full node peers. (Although not all full nodes
may store all blocks.) This allows it to fetch blocks in parallel and
avoid having its download speed constrained to the upload speed of a
single sync node.

To spread the load between multiple peers, Bitcoin Core will only
request up to 16 blocks at a time from a single peer. Combined with
its maximum of 8 outbound connections, this means headers-first
Bitcoin Core will request a maximum of 128 blocks simultaneously
during IBD (the same maximum number that blocks-first Bitcoin Core
requested from its sync node).





[image: Simulated Headers-First Download Window]

Bitcoin Core’s headers-first mode uses a 1,024-block moving download
window to maximize download speed. The lowest-height block in the window
is the next block to be validated; if the block hasn’t arrived by the
time Bitcoin Core is ready to validate it, Bitcoin Core will wait a
minimum of two more seconds for the stalling node to send the block. If
the block still hasn’t arrived, Bitcoin Core will disconnect from the
stalling node and attempt to connect to another node. For example, in
the illustration above, Node A will be disconnected if it doesn’t send
block 3 within at least two seconds.

Once the IBD node is synced to the tip of the block chain, it will
accept blocks sent through the regular block broadcasting described in a
later subsection.

Resources: The table below summarizes the messages mentioned
throughout this subsection. The links in the message field will take you
to the reference page for that message.

| Message | [getheaders][getheaders message] | [headers][headers message] | [getdata][getdata message]                             | [block][block message]
| From→To | IBD→Sync                           | Sync→IBD                     | IBD→Many                                               | Many→IBD
| Payload | One or more header hashes          | Up to 2,000 block headers    | One or more block inventories derived from header hashes | One serialized block

{% endautocrossref %}






Block Broadcasting

{% include helpers/subhead-links.md %}

{% autocrossref %}

When a miner discovers a new block, it broadcasts the new block to its
peers using one of the following methods:


	[Unsolicited Block Push][]{:#term-unsolicited-block-push}{:.term}:
the miner sends a block message to each of its full node peers with
the new block. The miner can reasonably bypass the standard relay
method in this way because it knows none of its peers already have the
just-discovered block.



	[Standard Block Relay][]{:#term-standard-block-relay}{:.term}:
the miner, acting as a standard relay node, sends an inv message to
each of its peers (both full node and SPV) with an inventory referring
to the new block. The most common responses are:


	Each blocks-first (BF) peer that wants the block replies with a
getdata message requesting the full block.

	Each headers-first (HF) peer that wants the block replies with a
getheaders message containing the header hash of the
highest-height header on its best header chain, and likely also
some headers further back on the best header chain to allow fork
detection. That message is immediately followed by a getdata
message requesting the full block. By requesting headers first, a
headers-first peer can refuse orphan blocks as described in the
subsection below.

	Each Simplified Payment Verification (SPV) client that wants the
block replies with a getdata message typically requesting a
merkle block.



The miner replies to each request accordingly by sending the block
in a block message, one or more headers in a headers message,
or the merkle block and transactions relative to the SPV client’s
bloom filter in a merkleblock message followed by zero or more
tx messages.





By default, Bitcoin Core broadcasts blocks using standard block relay,
but it will accept blocks sent using either of the methods described above.

Full nodes validate the received block and then advertise it to their
peers using the standard block relay method described above.  The condensed
table below highlights the operation of the messages described above
(Relay, BF, HF, and SPV refer to the relay node, a blocks-first node, a
headers-first node, and an SPV client; any refers to a node using any
block retrieval method.)

| Message | [inv][inv message]                                   | [getdata][getdata message]               | [getheaders][getheaders message]                                     | [headers][headers message]
| From→To | Relay→Any                                            | BF→Relay                                   | HF→Relay                                                               | Relay→HF
| Payload | The inventory of the new block                         | The inventory of the new block             | One or more header hashes on the HF node’s best header chain (BHC)     | Up to 2,000 headers connecting HF node’s BHC to relay node’s BHC
Message	[block][block message]	[merkleblock][merkleblock message]	[tx][tx message]
From→To	Relay→BF/HF	Relay→SPV	Relay→SPV
Payload	The new block in [serialized format][section serialized blocks]	The new block filtered into a merkle block	Serialized transactions from the new block that match the bloom filter

{% endautocrossref %}


Orphan Blocks

{% include helpers/subhead-links.md %}

{% autocrossref %}

Blocks-first nodes may download orphan blocks—blocks whose previous
block header hash field refers to a block header this node
hasn’t seen yet. In other words, orphan blocks have no known parent
(unlike stale blocks, which have known parents but which aren’t part of
the best block chain).

[image: Difference Between Orphan And Stale Blocks]

When a blocks-first node downloads an orphan block, it will not validate
it. Instead, it will send a getblocks message to the node which sent
the orphan block; the broadcasting node will respond with an inv message
containing inventories of any blocks the downloading node is missing (up
to 500); the downloading node will request those blocks with a getdata
message; and the broadcasting node will send those blocks with a block
message. The downloading node will validate those blocks, and once the
parent of the former orphan block has been validated, it will validate
the former orphan block.

Headers-first nodes avoid some of this complexity by always requesting
block headers with the getheaders message before requesting a block
with the getdata message. The broadcasting node will send a headers
message containing all the block headers (up to 2,000) it thinks the
downloading node needs to reach the tip of the best header chain; each of
those headers will point to its parent, so when the downloading node
receives the block message, the block shouldn’t be an orphan
block—all of its parents should be known (even if they haven’t been
validated yet). If, despite this, the block received in the block
message is an orphan block, a headers-first node will discard it immediately.

However, orphan discarding does mean that headers-first nodes will
ignore orphan blocks sent by miners in an unsolicited block push.

{% endautocrossref %}






Transaction Broadcasting

{% include helpers/subhead-links.md %}

{% autocrossref %}

In order to send a transaction to a peer, an inv message is sent. If a getdata response message is received, the transaction is sent using tx. The peer receiving this transaction also forwards the transaction in the same manner, given that it is a valid transaction.

{% endautocrossref %}


Memory Pool

{% include helpers/subhead-links.md %}

{% autocrossref %}

Full peers may keep track of unconfirmed transactions which are eligible to
be included in the next block. This is essential for miners who will
actually mine some or all of those transactions, but it’s also useful
for any peer who wants to keep track of unconfirmed transactions, such
as peers serving unconfirmed transaction information to SPV clients.

Because unconfirmed transactions have no permanent status in Bitcoin,
Bitcoin Core stores them in non-persistent memory, calling them a memory
pool or mempool. When a peer shuts down, its memory pool is lost except
for any transactions stored by its wallet. This means that never-mined
unconfirmed transactions tend to slowly disappear from the network as
peers restart or as they purge some transactions to make room in memory
for others.

Transactions which are mined into blocks that later become stale blocks may be
added back into the memory pool. These re-added transactions may be
re-removed from the pool almost immediately if the replacement blocks
include them. This is the case in Bitcoin Core, which removes stale
blocks from the chain one by one, starting with the tip (highest block).
As each block is removed, its transactions are added back to the memory
pool. After all of the stale blocks are removed, the replacement
blocks are added to the chain one by one, ending with the new tip. As
each block is added, any transactions it confirms are removed from the
memory pool.

SPV clients don’t have a memory pool for the same reason they don’t
relay transactions. They can’t independently verify that a transaction
hasn’t yet been included in a block and that it only spends UTXOs, so
they can’t know which transactions are eligible to be included in the
next block.

{% endautocrossref %}






Misbehaving Nodes

{% include helpers/subhead-links.md %}

{% autocrossref %}

Take note that for both types of broadcasting, mechanisms are in place to punish misbehaving peers who take up bandwidth and computing resources by sending false information. If a peer gets a banscore above the -banscore=<n> threshold, he will be banned for the number of seconds defined by -bantime=<n>, which is 86,400 by default (24 hours).

{% endautocrossref %}




Alerts

{% include helpers/subhead-links.md %}

{% autocrossref %}

In case of a bug or attack,
the Bitcoin Core developers provide a
Bitcoin alert service [https://bitcoin.org/en/alerts] with an RSS feed
and users of Bitcoin Core can check the error field of the getinfo RPC
results to get currently active alerts for their specific version of
Bitcoin Core.

These messages are aggressively broadcast using the alert message, being sent to each peer upon connect for the duration of the alert.

These messages are signed by a specific ECDSA private key that only a small number of developers control.

Resource: More details about the structure of messages and a complete list of message types can be found in
the [P2P reference section][section P2P reference].

{% endautocrossref %}







          

      

      

    

  

  
    
    
    P2P Network
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/example_p2p_networking.md” %}


P2P Network

{% include helpers/subhead-links.md %}


Creating A Bloom Filter

{% include helpers/subhead-links.md %}

{% autocrossref %}

In this section, we’ll use variable names that correspond to the field
names in the [filterload message documentation][filterload message].
Each code block precedes the paragraph describing it.

{% highlight python %}
#!/usr/bin/env python

BYTES_MAX = 36000
FUNCS_MAX = 50

nFlags = 0
{% endhighlight %}

We start by setting some maximum values defined in BIP37: the maximum
number of bytes allowed in a filter and the maximum number of hash
functions used to hash each piece of data.  We also set nFlags to zero,
indicating we don’t want the remote node to update the filter for us.
(We won’t use nFlags again in the sample program, but real programs will
need to use it.)

{% highlight python %}
n = 1
p = 0.0001
{% endhighlight %}

We define the number (n) of elements we plan to insert into the filter
and the false positive rate (p) we want to help protect our privacy. For
this example, we will set n to one element and p to a rate of
1-in-10,000 to produce a small and precise filter for illustration
purposes. In actual use, your filters will probably be much larger.

{% highlight python %}
from math import log
nFilterBytes = int(min((-1 / log(2)**2 * n * log(p)) / 8, BYTES_MAX))
nHashFuncs = int(min(nFilterBytes * 8 / n * log(2), FUNCS_MAX))

from bitarray import bitarray  # from pypi.python.org/pypi/bitarray
vData = nFilterBytes * 8 * bitarray(‘0’, endian=”little”)
{% endhighlight %}

Using the formula described in BIP37, we calculate the ideal size of the
filter (in bytes) and the ideal number of hash functions to use. Both
are truncated down to the nearest whole number and both are also
constrained to the maximum values we defined earlier. The results of
this particular fixed computation are 2 filter bytes and 11 hash
functions. We then use nFilterBytes to create a little-endian bit
array of the appropriate size.

{% highlight python %}
nTweak = 0
{% endhighlight %}

We also should choose a value for nTweak.  In this case, we’ll simply
use zero.

{% highlight python %}
import pyhash  # from https://github.com/flier/pyfasthash
murmur3 = pyhash.murmur3_32()

def bloom_hash(nHashNum, data):
seed = (nHashNum * 0xfba4c795 + nTweak) & 0xffffffff
return( murmur3(data, seed=seed) % (nFilterBytes * 8) )
{% endhighlight %}

We setup our hash function template using the formula and 0xfba4c795
constant set in BIP37. Note that we limit the size of the seed to four
bytes and that we’re returning the result of the hash modulo the size of
the filter in bits.

{% highlight python %}
data_to_hash = “019f5b01d4195ecbc9398fbf3c3b1fa9” + “bb3183301d7a1fb3bd174fcfa40a2b65”
data_to_hash = data_to_hash.decode(“hex”)
{% endhighlight %}

For the data to add to the filter, we’re adding a TXID. Note that the
TXID is in internal byte order.

{% highlight python %}
print ”                             Filter (As Bits)”
print “nHashNum   nIndex   Filter   0123456789abcdef”
print “~~~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~~~~~~~~~~~”
for nHashNum in range(nHashFuncs):
nIndex = bloom_hash(nHashNum, data_to_hash)

## Set the bit at nIndex to 1
vData[nIndex] = True

## Debug: print current state
print '      {0:2}      {1:2}     {2}   {3}'.format(
    nHashNum,
    hex(int(nIndex)),
    vData.tobytes().encode("hex"),
    vData.to01()
)





print
print “Bloom filter:”, vData.tobytes().encode(“hex”)
{% endhighlight %}

Now we use the hash function template to run a slightly different hash
function for nHashFuncs times. The result of each function being run
on the transaction is used as an index number: the bit at that index is
set to 1. We can see this in the printed debugging output:

{% highlight text %}
Filter (As Bits)
nHashNum   nIndex   Filter   0123456789abcdef
~~~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~~~~~~~~~~~
0      0x7     8000   0000000100000000
1      0x9     8002   0000000101000000
2      0xa     8006   0000000101100000
3      0x2     8406   0010000101100000
4      0xb     840e   0010000101110000
5      0x5     a40e   0010010101110000
6      0x0     a50e   1010010101110000
7      0x8     a50f   1010010111110000
8      0x5     a50f   1010010111110000
9      0x8     a50f   1010010111110000
10      0x4     b50f   1010110111110000

Bloom filter: b50f
{% endhighlight %}

Notice that in iterations 8 and 9, the filter did not change because the
corresponding bit was already set in a previous iteration (5 and 7,
respectively).  This is a normal part of bloom filter operation.

We only added one element to the filter above, but we could repeat the
process with additional elements and continue to add them to the same
filter. (To maintain the same false-positive rate, you would need a
larger filter size as computed earlier.)

Note: for a more optimized Python implementation with fewer external
dependencies, see [python-bitcoinlib’s][python-bitcoinlib] bloom filter
module which is based directly on Bitcoin Core’s C++ implementation.

Using the filterload message format, the complete filter created above
would be the binary form of the annotated hexdump shown below:

{% highlight text %}
02 ......... Filter bytes: 2
b50f ....... Filter: 1010 1101 1111 0000
0b000000 ... nHashFuncs: 11
00000000 ... nTweak: 0/none
00 ......... nFlags: BLOOM_UPDATE_NONE
{% endhighlight %}

{% endautocrossref %}




Evaluating A Bloom Filter

{% include helpers/subhead-links.md %}

{% autocrossref %}

Using a bloom filter to find matching data is nearly identical to
constructing a bloom filter—except that at each step we check to see
if the calculated index bit is set in the existing filter.

{% highlight python %}
vData = bitarray(endian=’little’)
vData.frombytes(“b50f”.decode(“hex”))
nHashFuncs = 11
nTweak = 0
nFlags = 0
{% endhighlight %}

Using the bloom filter created above, we import its various parameters.
Note, as indicated in the section above, we won’t actually use nFlags
to update the filter.

{% highlight python %}
def contains(nHashFuncs, data_to_hash):
for nHashNum in range(nHashFuncs):
## bloom_hash as defined in previous section
nIndex = bloom_hash(nHashNum, data_to_hash)

    if vData[nIndex] != True:
        print "MATCH FAILURE: Index {0} not set in {1}".format(
            hex(int(nIndex)),
            vData.to01()
        )
        return False





{% endhighlight %}

We define a function to check an element against the provided filter.
When checking whether the filter might contain an element, we test to
see whether a particular bit in the filter is already set to 1 (if it
isn’t, the match fails).

{% highlight python %}






Test 1: Same TXID as previously added to filter

data_to_hash = “019f5b01d4195ecbc9398fbf3c3b1fa9” + “bb3183301d7a1fb3bd174fcfa40a2b65”
data_to_hash = data_to_hash.decode(“hex”)
contains(nHashFuncs, data_to_hash)
{% endhighlight %}

Testing the filter against the data element we previously added, we get
no output (indicating a possible match).  Recall that bloom filters have
a zero false negative rate—so they should always match the inserted
elements.

{% highlight python %}




Test 2: Arbitrary string

data_to_hash = “1/10,000 chance this ASCII string will match”
contains(nHashFuncs, data_to_hash)
{% endhighlight %}

Testing the filter against an arbitrary element, we get the failure
output below.  Note: we created the filter with a 1-in-10,000 false
positive rate (which was rounded up somewhat when we truncated), so it
was possible this arbitrary string would’ve matched the filter anyway.
It is not possible to set a bloom filter to a false positive rate of
zero, so your program will always have to deal with false positives.
The output below shows us that one of the hash functions returned an
index number of 0x06, but that bit wasn’t set in the filter, causing the
match failure:

{% highlight text %}
MATCH FAILURE: Index 0x6 not set in 1010110111110000
{% endhighlight %}

{% endautocrossref %}


Retrieving A MerkleBlock

{% include helpers/subhead-links.md %}

{% autocrossref %}

For the merkleblock message documentation on the reference page, an
actual merkle block was retrieved from the network and manually
processed.  This section walks through each step of the process,
demonstrating basic network communication and merkle block processing.

{% highlight python %}

#!/usr/bin/env python

from time import sleep
from hashlib import sha256
import struct
import sys

network_string = “f9beb4d9”.decode(“hex”)  # Mainnet

def send(msg,payload):
## Command is ASCII text, null padded to 12 bytes
command = msg + ( ( 12 - len(msg) ) * “\00” )

## Payload length is a uint32_t
payload_raw = payload.decode("hex")
payload_len = struct.pack("I", len(payload_raw))

## Checksum is first 4 bytes of SHA256(SHA256(<payload>))
checksum = sha256(sha256(payload_raw).digest()).digest()[:4]

sys.stdout.write(
    network_string
    + command
    + payload_len
    + checksum
    + payload_raw
)
sys.stdout.flush()





{% endhighlight %}

To connect to the P2P network, the trivial Python function above was
developed to compute message headers and send payloads decoded from hex.

{% highlight python %}






Create a version message

send(“version”,
“71110100” # ........................ Protocol Version: 70001
+ “0000000000000000” # ................ Services: Headers Only (SPV)
+ “c6925e5400000000” # ................ Time: 1415484102
+ “00000000000000000000000000000000”
+ “0000ffff7f000001208d” # ............ Receiver IP Address/Port
+ “00000000000000000000000000000000”
+ “0000ffff7f000001208d” # ............ Sender IP Address/Port
+ “0000000000000000” # ................ Nonce (not used here)
+ “1b” # .............................. Bytes in version string
+ “2f426974636f696e2e6f726720457861”
+ “6d706c653a302e392e332f” # .......... Version string
+ “93050500” # ........................ Starting block height: 329107
+ “00” # .............................. Relay transactions: false
)
{% endhighlight %}

Peers on the network will not accept any requests until you send them a
version message. The receiving node will reply with their version
message and a verack message.

{% highlight python %}
sleep(1)
send(“verack”, “”)
{% endhighlight %}

We’re not going to validate their version message with this simple
script, but we will sleep a short bit and send back our own verack
message as if we had accepted their version message.

{% highlight python %}
send(“filterload”,
“02”  # ........ Filter bytes: 2
+ “b50f” # ....... Filter: 1010 1101 1111 0000
+ “0b000000” # ... nHashFuncs: 11
+ “00000000” # ... nTweak: 0/none
+ “00” # ......... nFlags: BLOOM_UPDATE_NONE
)
{% endhighlight %}

We set a bloom filter with the filterload message. This filter is
described in the two preceeding sections.

{% highlight python %}
send(“getdata”,
“01” # ................................. Number of inventories: 1
+ “03000000” # ........................... Inventory type: filtered block
+ “a4deb66c0d726b0aefb03ed51be407fb”
+ “ad7331c6e8f9eef231b7000000000000” # ... Block header hash
)
{% endhighlight %}

We request a merkle block for transactions matching our filter,
completing our script.

To run the script, we simply pipe it to the Unix [netcat
command][netcat] or one of its many clones, one of which is available
for practically any platform. For example, with the original netcat and
using hexdump (hd) to display the output:

{% highlight bash %}




Connect to the Bitcoin Core peer running on localhost

python get-merkle.py | nc localhost 8333 | hd
{% endhighlight %}

Part of the response is shown in the section below.

{% endautocrossref %}


Parsing A MerkleBlock

{% include helpers/subhead-links.md %}

{% autocrossref %}

In the section above, we retrieved a merkle block from the network; now
we will parse it. Most of the block header has been omitted. For
a more complete hexdump, see the example in the [merkleblock message
section][merkleblock message].

{% highlight text %}
7f16c5962e8bd963659c793ce370d95f
093bc7e367117b3c30c1f8fdd0d97287 ... Merkle root

07000000 ........................... Transaction count: 7
04 ................................. Hash count: 4

3612262624047ee87660be1a707519a4
43b1c1ce3d248cbfc6c15870f6c5daa2 ... Hash #1
019f5b01d4195ecbc9398fbf3c3b1fa9
bb3183301d7a1fb3bd174fcfa40a2b65 ... Hash #2
41ed70551dd7e841883ab8f0b16bf041
76b7d1480e4f0af9f3d4c3595768d068 ... Hash #3
20d2a7bc994987302e5b1ac80fc425fe
25f8b63169ea78e68fbaaefa59379bbf ... Hash #4

01 ................................. Flag bytes: 1
1d ................................. Flags: 1 0 1 1 1 0 0 0
{% endhighlight %}

We parse the above merkleblock message using the following
instructions.  Each illustration is described in the paragraph below it.

[image: Parsing A MerkleBlock]

We start by building the structure of a merkle tree based on the number
of transactions in the block.

[image: Parsing A MerkleBlock]

The first flag is a 1 and the merkle root is (as always) a non-TXID
node, so we will need to compute the hash later based on this node’s
children. Accordingly, we descend into the merkle root’s left child and
look at the next flag for instructions.

[image: Parsing A MerkleBlock]

The next flag in the example is a 0 and this is also a non-TXID node, so
we apply the first hash from the merkleblock message to this node. We
also don’t process any child nodes—according to the peer which created
the merkleblock message, none of those nodes will lead to TXIDs of
transactions that match our filter, so we don’t need them. We go back up
to the merkle root and then descend into its right child and look at the
next (third) flag for instructions.

[image: Parsing A MerkleBlock]

The third flag in the example is another 1 on another non-TXID node, so
we descend into its left child.

[image: Parsing A MerkleBlock]

The fourth flag is also a 1 on another non-TXID node, so we descend
again—we will always continue descending until we reach a TXID node or
a non-TXID node with a 0 flag (or we finish filling out the tree).

[image: Parsing A MerkleBlock]

Finally, on the fifth flag in the example (a 1), we reach a TXID node.
The 1 flag indicates this TXID’s transaction matches our filter and
that we should take the next (second) hash and use it as this node’s
TXID.

[image: Parsing A MerkleBlock]

The sixth flag also applies to a TXID, but it’s a 0 flag, so this
TXID’s transaction doesn’t match our filter; still, we take the next
(third) hash and use it as this node’s TXID.

[image: Parsing A MerkleBlock]

We now have enough information to compute the hash for the fourth node
we encountered—it’s the hash of the concatenated hashes of the two
TXIDs we filled out.

[image: Parsing A MerkleBlock]

Moving to the right child of the third node we encountered, we fill it
out using the seventh flag and final hash—and discover there are no
more child nodes to process.

[image: Parsing A MerkleBlock]

We hash as appropriate to fill out the tree.  Note that the eighth flag is
not used—this is acceptable as it was required to pad out a flag byte.

The final steps would be to ensure the computed computed merkle root
is identical to the merkle root in the header and check the other steps
of the parsing checklist in the merkleblock message section.

{% endautocrossref %}







          

      

      

    

  

  
    
    
    Not A Specification
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/ref_intro.md” %}

{% autocrossref %}

The Developer Reference aims to provide technical details and API information
to help you start building Bitcoin-based applications, but it is [not a
specification][]. To make the best use of
this documentation, you may want to install the current version of Bitcoin
Core, either from [source][core git] or from a [pre-compiled executable][core executable].

Questions about Bitcoin development are best asked in one of the
[Bitcoin development communities][dev communities].
Errors or suggestions related to
documentation on Bitcoin.org can be [submitted as an issue][docs issue]
or posted to the [bitcoin-documentation mailing list][].

In the following documentation, some strings have been shortened or wrapped: “[...]“
indicates extra data was removed, and lines ending in a single backslash “\“
are continued below. If you hover your mouse over a paragraph, cross-reference
links will be shown in blue.  If you hover over a cross-reference link, a brief
definition of the term will be displayed in a tooltip.

{% endautocrossref %}


Not A Specification

{:.no_toc}
{% include helpers/subhead-links.md %}

{% autocrossref %}

The Bitcoin.org Developer Documentation describes how Bitcoin works to
help educate new Bitcoin developers, but it is not a specification—and
it never will be.

Bitcoin security depends on consensus. Should your program diverge from
consensus, its security is weakened or destroyed. The cause of the
divergence doesn’t matter: it could be a bug in your program, it could
be an [error in this documentation][errors in docs] which you
implemented as described, or it could be you do everything right but
other software on the network [behaves unexpectedly][v0.8 chain
fork]. The specific cause will not matter to the users of your software
whose wealth is lost.

The only correct specification of consensus behavior is the actual
behavior of programs on the network which maintain consensus. As that
behavior is subject to arbitrary inputs in a large variety
of unique environments, it cannot ever be fully documented here or
anywhere else.

However, the Bitcoin Core developers are working on making their
consensus code portable so other implementations can use it. Bitcoin
Core 0.10.0 will provide libbitcoinconsensus, a first attempt at
exporting some consensus code. Future versions of Bitcoin Core will
likely provide consensus code that is more complete, more portable, and
more consistent in diverse environments.

In addition, we also warn you that this documentation has not been
extensively reviewed by Bitcoin experts and so likely contains numerous
errors. At the bottom of the menu on the left, you will find links that
allow you to report an issue or to edit the documentation on GitHub.
Please use those links if you find any errors or important missing
information.

{% endautocrossref %}





          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}

{% autocrossref %}

The Developer Guide aims to provide the information you need to understand
Bitcoin and start building Bitcoin-based applications, but it is [not a
specification][]. To make the best use of
this documentation, you may want to install the current version of Bitcoin
Core, either from [source][core git] or from a [pre-compiled executable][core executable].

Questions about Bitcoin development are best asked in one of the
[Bitcoin development communities][dev communities].
Errors or suggestions related to
documentation on Bitcoin.org can be [submitted as an issue][docs issue]
or posted to the [bitcoin-documentation mailing list][].

In the following documentation, some strings have been shortened or wrapped: “[...]“
indicates extra data was removed, and lines ending in a single backslash “\“
are continued below. If you hover your mouse over a paragraph, cross-reference
links will be shown in blue.  If you hover over a cross-reference link, a brief
definition of the term will be displayed in a tooltip.

{% endautocrossref %}



          

      

      

    

  

  
    
    
    Transactions
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/ref_transactions.md” %}


Transactions

{% include helpers/subhead-links.md %}

The following subsections briefly document core transaction details.


OpCodes

{% include helpers/subhead-links.md %}

{% autocrossref %}

The opcodes used in the pubkey scripts of standard transactions are:


	Various data pushing opcodes from 0x00 to 0x4e (1–78). These aren’t
typically shown in examples, but they must be used to push
signatures and public keys onto the stack. See the link below this list
for a description.



	OP_TRUE/OP_1 (0x51) and OP_2 through OP_16 (0x52–0x60), which
push the values 1 through 16 to the stack.



	[OP_CHECKSIG][op_checksig]{:#term-op-checksig}{:.term} consumes a signature and a full public key, and pushes
true onto the stack if the transaction data specified by the SIGHASH flag was
converted into the signature using the same ECDSA private key that
generated the public key.  Otherwise, it pushes false onto the stack.



	[OP_DUP][op_dup]{:#term-op-dup}{:.term} pushes a copy of the topmost stack item on to the stack.



	[OP_HASH160][op_hash160]{:#term-op-hash160}{:.term} consumes the topmost item on the stack,
computes the RIPEMD160(SHA256()) hash of that item, and pushes that hash onto the stack.



	[OP_EQUAL][op_equal]{:#term-op-equal}{:.term} consumes the top two items on the stack, compares them, and
pushes true onto the stack if they are the same, false if not.



	[OP_VERIFY][op_verify]{:#term-op-verify}{:.term} consumes the topmost item on the stack.
If that item is zero (false) it terminates the script in failure.



	[OP_EQUALVERIFY][op_equalverify]{:#term-op-equalverify}{:.term} runs OP_EQUAL and then OP_VERIFY in sequence.



	[OP_CHECKMULTISIG][op_checkmultisig]{:#term-op-checkmultisig}{:.term} consumes the value (n) at the top of the stack,
consumes that many of the next stack levels (public keys), consumes
the value (m) now at the top of the stack, and consumes that many of
the next values (signatures) plus one extra value.

The “one extra value” it consumes is the result of an off-by-one
error in the Bitcoin Core implementation. This value is not used, so
signature scripts prefix the list of secp256k1 signatures with a
single OP_0 (0x00).

OP_CHECKMULTISIG compares the first signature against each public
key until it finds an ECDSA match. Starting with the subsequent
public key, it compares the second signature against each remaining
public key until it finds an ECDSA match. The process is repeated
until all signatures have been checked or not enough public keys
remain to produce a successful result.

Because public keys are not checked again if they fail any signature
comparison, signatures must be placed in the signature script using
the same order as their corresponding public keys were placed in
the pubkey script or redeem script. See the OP_CHECKMULTISIG warning
below for more details.



	[OP_RETURN][op_return]{:#term-op-return}{:.term} terminates the script in failure when executed.





A complete list of opcodes can be found on the Bitcoin Wiki [Script
Page][wiki script], with an authoritative list in the opcodetype enum
of the Bitcoin Core [script header file][core script.h]

[image: Warning icon]
Signature script modification warning:
Signature scripts are not signed, so anyone can modify them. This
means signature scripts should only contain data and data-pushing opcodes
which can’t be modified without causing the pubkey script to fail.
Placing non-data-pushing opcodes in the signature script currently
makes a transaction non-standard, and future consensus rules may forbid
such transactions altogether. (Non-data-pushing opcodes are already
forbidden in signature scripts when spending a P2SH pubkey script.)

[image: Warning icon]
OP_CHECKMULTISIG warning: The multisig verification process
described above requires that signatures in the signature script be
provided in the same order as their corresponding public keys in
the pubkey script or redeem script. For example, the following
combined signature and pubkey script will produce the stack and
comparisons shown:

{% highlight text %}
OP_0 
  
    
    
    P2P Network
    
    

    
 
  
  

    
      
          
            
  {% comment %}
This file is licensed under the MIT License (MIT) available on
http://opensource.org/licenses/MIT.
{% endcomment %}
{% assign filename=”_includes/devdoc/ref_p2p_networking.md” %}


P2P Network

{% include helpers/subhead-links.md %}

{% autocrossref %}

This section describes the Bitcoin P2P network protocol (but it is [not a
specification][]). It does not describe the discontinued direct [IP-to-IP
payment protocol][], the [BIP70 payment protocol][/en/glossary/payment-protocol], the
[GetBlockTemplate mining protocol][section getblocktemplate], or any
network protocol never implemented in an official version of Bitcoin Core.

All peer-to-peer communication occurs entirely over TCP.

Note: unless their description says otherwise, all multi-byte
integers mentioned in this section are transmitted in little-endian order.

{% endautocrossref %}


Constants And Defaults

{% include helpers/subhead-links.md %}

{% autocrossref %}

The following constants and defaults are taken from Bitcoin Core’s
[chainparams.cpp][core chainparams.cpp] source code file.

| Network | Default Port | [Start String][/en/glossary/start-string]{:#term-start-string}{:.term} | Max nBits
|———|————–|———————————————–|—————
| Mainnet | 8333         | 0xf9beb4d9                                    | 0x1d00ffff
| Testnet | 18333        | 0x0b110907                                    | 0x1d00ffff
| Regtest | 18444        | 0xfabfb5da                                    | 0x207fffff

Note: the testnet start string and nBits above are for testnet3; the
original testnet used a different string and higher (less difficult)
nBits.

Command line parameters can change what port a node listens on (see
-help). Start strings are hardcoded constants that appear at the start
of all messages sent on the Bitcoin network; they may also appear in
data files such as Bitcoin Core’s block database.  The nBits displayed
above are in big-endian order; they’re sent over the network in
little-endian order.

Bitcoin Core’s [chainparams.cpp][core chainparams.cpp] also includes
other constants useful to programs, such as the hash of the genesis
blocks for the different networks as well as the alert keys for mainnet
and testnet.

{% endautocrossref %}




Protocol Versions

{% include helpers/subh